Energy Storage/generating Using Nanostructure (e.g., Fuel Cell, Battery, Etc.) Patents (Class 977/948)
  • Publication number: 20120306319
    Abstract: Provided are a nano piezoelectric device and a method of forming the nano piezoelectric device. The nano piezoelectric device includes a lower electrode, a nanowire extending upward from the lower electrode, and an upper electrode on the nanowire. The nanowire includes a conductive wire core and a wire shell surrounding the wire core and including a piezoelectric material.
    Type: Application
    Filed: August 1, 2012
    Publication date: December 6, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Jong-Hyurk PARK
  • Publication number: 20120304599
    Abstract: A flexible supercapacitor and a preparation method thereof are provided. The flexible supercapacitor includes a polymer-based solid electrolyte layer, two active layers respectively disposed on opposite surfaces of the polymer-based solid electrolyte layer, and two electron conducting layers disposed on outer exposed surfaces of the two active layers.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Applicant: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Wen-Hsien Ho, Chung-Bo Tsai, Po-Chou Chen, Yan-Ru Chen
  • Publication number: 20120307419
    Abstract: A capacitor having a first electrode, a second electrode, a dielectric layer of a PTFE film having a dielectric strength greater than about 500 V/um, a tensile strength of greater than about 10,000 psi (or, alternatively, a tensile yield strength of greater than about 2,000 psi), and a thickness less than about 20 microns disposed between the first electrode and the second electrode.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Inventors: Mark N. Donhowe, Jeffrey M. Lawler
  • Patent number: 8323744
    Abstract: A variety of methods, devices, systems and arrangements are implemented involving nanowire meshes. One such method is implemented to include synthesizing metal nanowires in a solution containing a structure-directing agent. The metal nanowires are deposited on a substrate to form a sheet of nanowires. The deposited metal nanowires are heated to a temperature less than about 200 degrees Celsius and for a period of time of about 10 minutes to 60 minutes, thereby removing the structure-directing agent and modifying the electrical conductivity and optical transmittance of the sheet of nanowires.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: December 4, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Steve T. Connor, Jung-Yong Lee, Yi Cui, Peter Peumans
  • Publication number: 20120298203
    Abstract: A dibenzofluoranthene compound represented by the following formula (A). In the formula at least one of R1 to R14 is an amino group represented by the following formula (S); R1 to R14 that is not an amino group represented by the formula (S) are independently a hydrogen atom, a C1-C40 substituted or unsubstituted alkyl group, a C2-C40 substituted or unsubstituted alkenyl group, a C2-C40 substituted or unsubstituted alkynyl group, a C6-C40 substituted or unsubstituted aryl group, a C3-C40 substituted or unsubstituted heteroaryl group, a C1-C40 substituted or unsubstituted alkoxy group or a C6-C40 substituted or unsubstituted aryloxy group. In the formula (S), Ra and Rb are independently a C6-C40 substituted or unsubstituted aryl group or a C1-C40 substituted or unsubstituted alkyl group; and Ra and Rb may combine with each other to form a ring.
    Type: Application
    Filed: January 26, 2011
    Publication date: November 29, 2012
    Inventors: Hidetsugu Ikeda, Masahide Matsuura
  • Publication number: 20120301606
    Abstract: Nanoparticles which contain noble metals alone or noble metals in combination with base metals. The nanoparticles are embedded in an aqueous solution of a temporary stabilizer based on a polysaccharide.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicant: UMICORE AG & CO. KG
    Inventors: Karl-Anton STARZ, Dan GOIA, Joachim KOEHLER, Volker BÄNISCH
  • Publication number: 20120301812
    Abstract: A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The method can include the steps of placing buckypaper in a vessel with a catalyst-precursor salt and a fluid. The temperature and pressure conditions within the vessel are modified so as to place the fluid in the supercritical state. The supercritical state of the supercritical fluid containing the precursor salt is maintained for period of time to impregnate the buckypaper with the catalyst-precursor salt. Catalyst nanoparticles are deposited on the buckypaper. The supercritical fluid and the precursor are removed to form a metal catalyst impregnated buckypaper.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 29, 2012
    Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping (Jim) Zheng, Wei Zhu, Changchun Zeng, Zhiyong Liang, Chun Zhang, Ben Wang
  • Publication number: 20120301781
    Abstract: In one aspect of the present invention, an electrode useable in an electrochemical cell includes an electrically conductive substrate, nanostructured current collectors in electrical contact with the conductive substrate, and nanoparticles of a ternary orthosilicate composite coated on the nanostructured current collectors. The ternary orthosilicate composite comprises Li2MnxFeyCozSiO4, where x+y+z=1.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 29, 2012
    Applicant: VANDERBILT UNIVERSITY
    Inventors: Weng Poo Kang, Supil Raina, Shao-Hua Hsu, Siyu Wei
  • Publication number: 20120301789
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Application
    Filed: August 1, 2012
    Publication date: November 29, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Publication number: 20120295147
    Abstract: A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 22, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Zhenguo Yang, Wei Wang, Daiwon Choi, Zimin Nie
  • Publication number: 20120295137
    Abstract: An electrode for reduction of an oxidant including a phosphorus-doped carbon-containing catalyst represented by the chemical formula CNxPy, where x is from 0 to about 10 wt. % and y is from about 1 ppm to about 10 wt. %. A device for producing electricity by facilitating an electrochemical reaction between a fuel and an oxidant. The device including a first electrode for oxidizing the fuel to produce protons and electrons. The device further includes a second electrode in electrical communication with the first electrode when electrically connected to the external circuit. The second electrode includes a phosphorus-doped carbon-containing catalyst for reducing the oxidant and is represented by the chemical formula CNxPy, where x is from 0 to about 10 wt. % and y is from about 1 ppm to about 10 wt. %. The device further includes an electrolyte, such as, a membrane, separating the first electrode from the second electrode.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 22, 2012
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Umit S. Ozkan, Dieter von Deak, Elizabeth Biddinger
  • Publication number: 20120291862
    Abstract: Photovoltaic and Light emitted diode devices comprise of epitaxial wafer of plurality of layers has been proposed. Quantum Dots are deposited onto the micro-nanostructure layer from the light incident direction to increasing light transmission to the active layer. Quantum dots deposited between the light source and the active layer, on the micro-nanostructure layer, to improve light excitation, since it can absorb wavelengths, which are not absorbed by the active layer, and the size and composition of quantum dots can determine its bandgap. A micro-nanostructured layer at the bottom of the PV wafer, which is produced by Molecular Beam Epitaxy (MBE), increases the internal light reflections in the active layer, which increases the efficiency of light absorption and that leads to a photocurrent enhancement.
    Type: Application
    Filed: March 9, 2011
    Publication date: November 22, 2012
    Applicant: EUROPEAN NANO INVEST AB
    Inventor: Rizgar Jiawook
  • Publication number: 20120293915
    Abstract: A capacitor includes a plurality of nanochannels formed in a dielectric material. A conductive film is formed over interior surfaces of the nanochannels, and a charge barrier is formed over the conductive film. An electrolytic solution is disposed in the nanochannels. An electrode is coupled to the electrolytic solution in the nanochannels to form the capacitor.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard A. Haight, Stephen M. Rossnagel
  • Publication number: 20120294793
    Abstract: A method comprises: physically attaching one or more of metals, metal compounds or oxides to walls of carbon nanotubes; treating the metals, metal compounds or oxides to bond the metals, metal compounds, or oxides chemically to the carbon nanotubes; removing the metals, metal compounds or oxides from the walls of the carbon nanotubes resulting in defected carbon nanotubes; and unzipping the defected carbon nanotubes into graphene sheets or ribbons.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 22, 2012
    Applicant: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Weixing Chen, Xinwei Cui
  • Publication number: 20120295161
    Abstract: The present disclosure relates to a lithium ion battery cathode. The lithium ion battery cathode includes a plurality of cathode active material particles and a conductive carrier. The conductive carrier includes a plurality of carbon nanotubes. The plurality of carbon nanotubes are entangled with each other to form a net structure. The present disclosure also relates to a lithium ion battery.
    Type: Application
    Filed: August 23, 2011
    Publication date: November 22, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: Jia-Ping Wang, Shu Luo, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20120285532
    Abstract: Provided is a transparent color solar cell, which includes a substrate, a first electrode layer disposed on the substrate, a transparent material layer including quantum dots having the same particle size, which absorb visible light provided from the sun through the first electrode layer and having a first wavelength region, and which selectively transmit visible light provided from the sun through the first electrode layer and having a second wavelength region, and a second electrode layer disposed on the transparent material layer.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sun Jin YUN, JungWook LIM, Yoo Jeong LEE
  • Publication number: 20120288765
    Abstract: A cathode of the lithium battery includes a composite film. The composite film includes a carbon nanotube film structure and a plurality of active material particles dispersed in the carbon nanotube film structure.
    Type: Application
    Filed: July 25, 2012
    Publication date: November 15, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, KAI-LI JIANG, LIANG LIU, XIAO-BO ZHANG, SHOU-SHAN FAN
  • Publication number: 20120289613
    Abstract: Provided are an emulsion comprising graphene oxide, a first fluid and a second fluid, and a drug delivery system comprising the emulsion. This emulsion is based on the discovery that graphene oxide is an amphiphile with hydrophilic edges and a more hydrophobic basal plane, and thus graphene oxide can act as a surfactant. Since the degree of ionization of the edge —COOH groups of the graphene oxide is affected by pH, the amphiphilicity of graphene oxide can be adjusted based on pH. Therefore, a method of separating a first liquid from a second liquid by providing an emulsion comprising graphene oxide, the first liquid and the second liquid is also provided. It was also discovered that graphene oxide can act as a molecular dispersing agent to process insoluble materials. Based on this discovery, a composition comprising graphene oxide, a solvent and an insoluble solid is provided.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Inventor: Jiaxing Huang
  • Publication number: 20120279552
    Abstract: A bio-solar cell including: one or more photosynthetic complexes, each photosynthetic complex including one or more chlorophyll compounds and one or more components of Photosystem II; one or more carbon nanotubes upon which the one or more photosynthetic complexes are bound at a first region of the one or more carbon nanotubes; and a conductive substrate attached to a second region of the one or more carbon nanotubes.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 8, 2012
    Applicant: ECSQUARED INC.
    Inventor: Edward Crowder
  • Publication number: 20120276451
    Abstract: A method for preparing an electrode composition, including a step of forming a suspension, in an unbuffered aqueous acid medium having a pH of 1 or in a buffered acid medium having a pH less than or equal to 4, containing an electrode active material in the form of particles of an element M selected from Si, Sn, and Ge, a polymer binder having reactive groups capable of reacting with hydroxyl groups in an acid medium, and an agent generating electronic conductivity. The invention also relates to the electrode obtained according to the method, as well as to a battery including such an electrode.
    Type: Application
    Filed: January 28, 2010
    Publication date: November 1, 2012
    Inventors: Bernard Lestriez, Dominique Guyomard, Driss Mazouzi, Lionel Roue
  • Publication number: 20120273033
    Abstract: A carbon nanotube plate is provided. The plate includes a first carbon nanotube layer composed of many first carbon nanotubes and a second carbon nanotube layer disposed on the first carbon nanotube layer. The second carbon nanotube layer is composed of many second carbon nanotubes placed in an orderly manner on the first carbon nanotube layer. At least two second carbon nanotubes are located along a curve. The surface of the second carbon nanotube layer has a whirlpool pattern.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Inventor: Hsin Yuan MIAO
  • Publication number: 20120276458
    Abstract: Methods and devices for enhanced energy storage in an electrochemical cell are provided. In some embodiments, an electrode for use in a metal-air electrochemical cell can include a plurality of nanofiber (NF) structures having high porosity, tunable mass, and tunable thickness. The NF structures are particularly suited for energy storage and can provide the electrode with exceptionally high gravimetric capacity and energy density when used in an electrochemical cell.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Betar M. Gallant, Yang Shao-Horn, Carl V. Thompson, II, Robert R. Mitchell, III
  • Publication number: 20120276468
    Abstract: The invention provides a composition having the formula (I): xXO2.yY2O5, (wherein: 0.5<x<0.7; 0.3<y<0.5; X comprises one or more of silicon, titanium, germanium and zirconium; and Y comprises one or more of phosphorus, vanadium arsenic and antimony), or a hydrate thereof, in which the composition comprises more than 50 wt % or more of crystalline material.
    Type: Application
    Filed: November 29, 2010
    Publication date: November 1, 2012
    Applicant: University Court of the University of St Andrews
    Inventors: Pierrot Sassou Attidekou, John Thomas Sirr Irvine
  • Publication number: 20120268861
    Abstract: There are provided a ceramic sheet product for a ceramic electronic component, a multilayer ceramic electronic component using the same, and a method of manufacturing the multilayer ceramic electronic component. The ceramic sheet product for a ceramic electronic component includes a ceramic layer; a metal layer formed on the ceramic layer; and metal nanostructures contacting the metal layer and protruding from the metal layer to an inner portion of the ceramic layer. With the multilayer ceramic electronic component using the ceramic sheet product for a ceramic electronic component, an interval between electrodes is reduced to thereby allow for the increase of capacitance, whereby a multilayer ceramic electronic component having high capacitance may be provided.
    Type: Application
    Filed: November 4, 2011
    Publication date: October 25, 2012
    Inventors: Kwang Jik LEE, Suk Jin Ham, Ji Hyuk Lim
  • Publication number: 20120270231
    Abstract: The disclosure relates to lattice-mismatched core-shell quantum dots (QDs). In certain embodiments, the lattice-mismatched core-shell QDs are used in methods for photovoltaic or photoconduction applications. They are also useful for multicolor molecular, cellular, and in vivo imaging.
    Type: Application
    Filed: November 15, 2010
    Publication date: October 25, 2012
    Inventors: Andrew M. Smith, Shuming Nie
  • Publication number: 20120268074
    Abstract: A power system adapted for supplying power in a high temperature environment is disclosed. The power system includes a rechargeable energy storage that is operable in a temperature range of between about seventy degrees Celsius and about two hundred and fifty degrees Celsius coupled to a circuit for at least one of supplying power from the energy storage and charging the energy storage; wherein the energy storage is configured to store between about one one hundredth (0.01) of a joule and about one hundred megajoules of energy, and to provide peak power of between about one one hundredth (0.01) of a watt and about one hundred megawatts, for at least two charge-discharge cycles. Methods of use and fabrication are provided. Embodiments of additional features of the power supply are included.
    Type: Application
    Filed: May 24, 2012
    Publication date: October 25, 2012
    Applicant: FASTCAP SYSTEMS CORPORATION
    Inventors: John Cooley, Riccardo Signorelli, Morris Green, Padmanaban Sasthan Kuttipillai, Christopher Deane, Lindsay A. Wilhelmus
  • Publication number: 20120270108
    Abstract: In one aspect, an anode active material is provided. The anode active material may include a crystalline carbon-based material that includes a core having a lattice spacing d002 of about 0.35 nm or more, and titanium-based oxide particles.
    Type: Application
    Filed: March 8, 2012
    Publication date: October 25, 2012
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Chang-Su Shin, Jae-Myung Kim, So-Ra Lee, Ui-Song Do, Beom-Kwon Kim
  • Publication number: 20120264020
    Abstract: A method of depositing silicon on carbon nanomaterials such as vapor grown carbon nanofibers, nanomats, or nanofiber powder is provided. The method includes flowing a silicon-containing precursor gas in contact with the carbon nanomaterial such that silicon is deposited on the exterior surface and within the hollow core of the carbon nanomaterials. A protective carbon coating may be deposited on the silicon-coated nanomaterials. The resulting nanocomposite materials may be used as anodes in lithium ion batteries.
    Type: Application
    Filed: October 7, 2011
    Publication date: October 18, 2012
    Applicant: Applied Sciences, Inc.
    Inventors: David J. Burton, Max L. Lake, Maryam Nazri, Andrew C. Palmer
  • Publication number: 20120262843
    Abstract: An electrode or a supercondenser. The electrode paste is a mixture containing a polymer formed using a liquid softening agent and an active charge. The paste is in the form of gel having an elasticity module of between 104 and 108 Pascal, at extrusion temperatures, in a range of frequencies of between 0.01 and 100 Hz.
    Type: Application
    Filed: February 9, 2012
    Publication date: October 18, 2012
    Inventors: Hélène Drevet, Isabelle Rey, Michel Peillet, Frédèric Abribat
  • Publication number: 20120265122
    Abstract: Methods and apparatuses to produce graphene and nanoparticle catalysts supported on graphene without the use of reducing agents, and with the concomitant production of heat, are provided. The methods and apparatuses employ radiant energy to reduce (deoxygenate) graphite oxide (GO) to graphene, or to reduce a mixture of GO plus one or more metals to to produce nanoparticle catalysts supported on graphene. Methods and systems to generate and utilize heat that is produced by irradiating GO, graphene and their metal and semiconductor nanocomposites with visible, infrared and/or ultraviolet radiation, e.g. using sunlight, lasers, etc. are also provided.
    Type: Application
    Filed: December 10, 2010
    Publication date: October 18, 2012
    Inventors: M. Samy El-Shall, Victor Abdelsayed, Saud I. Al-Resayes, Zeid Abdullah M. Alothman
  • Publication number: 20120262127
    Abstract: The present application is generally directed towards electrochemical energy storage devices. The devices comprise electrode material suspended in an appropriate electrolyte. Such devices are capable of achieving economical $/kWh(cycle) values and will enable much higher power and cycle life than currently used devices.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: EnerG2 Technologies, Inc.
    Inventors: Aaron Feaver, Richard Varjian, Chad Goodwin
  • Publication number: 20120262844
    Abstract: It is to provide a method for manufacturing a metal electrode having transition metal oxide coating layer and a metal electrode manufactured thereby, which eliminates a contact resistance problem and simultaneously improves electric conductivity of the electrode by using a one body electrode, which is not requiring separate current collector and binder, and further maintains pseudo-capacitance from the redox reaction by coating the metal surface with a transition metal oxide.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 18, 2012
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hak-Kwan KIM, Seung-Hyun Ra, Jun-Hee Bae, Hyun-Chul Jung
  • Publication number: 20120260985
    Abstract: A solar cell in which the P-type light absorbing layer is thin, and the nanoparticles are disposed. Although the P-type light absorbing layer is thin, the light absorption efficiency may be increased by the use of nanoparticles. Accordingly, the P-type light absorbing layer is formed thin, and thereby the material cost may be reduced and the process time may be shortened. Also, a solar cell in which the nanoparticles are disposed on the transparent electrode layer or inside the transparent electrode layer, and the size of the nanoparticles and the space between them are controlled such that the light absorption efficiency may be increased, and the nanoparticles are disposed in the N-type light absorbing layer, and the size of the nanoparticles and the space between them are controlled such that the light absorption efficiency may be increased.
    Type: Application
    Filed: November 14, 2011
    Publication date: October 18, 2012
    Applicants: SAMSUNG SDI CO., LTD., Myongji University Industry and Academia Cooperation Foundation, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwang-Soo HUH, Sang-Cheol PARK, Jeong-Hoon RYU, Jung-Gyu NAM, Sung-Chul KIM
  • Publication number: 20120264017
    Abstract: Methods of making a cathode element for an electrochemical cell. The methods comprise providing hollow carbon nanotubes and a sulfur source in a closed environment. Sulfur is deposited within an interior of the hollow carbon nanotube. The method includes cleaning an exterior surface of the carbon nanotubes and incorporating the carbon nanotubes into a cathode element. A cathodic material for a lithium-sulfur electrochemical cell is also provided. The material comprises a plurality of stacked-cone carbon nanotubes. Each nanotube defines a hollow interior and has a substantially continuous exterior surface area. Elemental sulfur is disposed within the hollow interior of each nanotube.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: GHOLAM-ABBAS NAZRI, DAVID BURTON, MARYAM NAZRI, PATRICK D. LAKE, ANDREW PALMER, MAX L. LAKE
  • Patent number: 8288190
    Abstract: The present invention provides methods of making junction devices, such as, fabrication methods. In certain embodiments, the junction device is a graphene/oxide semiconductor Schottky junction device or graphene/oxide semiconductor p-n heterojunction device. In certain instances, the Schottky junction device comprises graphene vapor-deposited directly on thin films, nanowires, nanotubes, nanobelts or nanoparticles, while the p-n heterojunction device is manufactured by doping the graphene of the Schottky junction device.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 16, 2012
    Assignee: The Industry & Academic Cooperation in Chungnam National Universtiy (IAC)
    Inventor: Eui-Tae Kim
  • Publication number: 20120258367
    Abstract: The present invention relates to a nanocomposite material including graphene and a lithium-containing metal oxide on a surface of the graphene, a method for preparing the same, and an energy storage device including the same as an electrode material. According to the present invention, the nanocomposite material, in which the nano-sized lithium-containing metal oxide with high crystallinity is combined with the graphene with high specific surface area and high electrical conductivity, has an effect of achieving excellent high efficiency charge and discharge characteristics of energy storage devices such as an ultra-high capacity capacitor with high power and high energy density and a lithium secondary battery with high energy density.
    Type: Application
    Filed: January 25, 2012
    Publication date: October 11, 2012
    Inventors: Hyun Chul Jung, Kwang Bum Kim, Bae Kyun Kim, Seong Min Bak
  • Publication number: 20120256600
    Abstract: Technologies are generally described for an electron conductive polymer capacitor may incorporate a conductive polymer mixture embedded with carbon nanoparticles between electrodes to rapidly charge and store large amounts of charge compared to conventional electrolytic capacitors. Such a capacitor may be constructed with a laminate sheet including layers of inner and outer electrodes, an electrolyte mixture between the electrodes, a conductive polymer mixture, and a composite mixture of carbon nanoparticles embedded in the conductive polymer between the inner electrodes. The laminate sheet may be wound into a roll and the inner and outer electrodes are coupled electrically. When an electric field is applied, cations within the electrolyte mixture move towards the outer electrodes and anions towards the inner electrodes.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Inventor: Vincenzo Casasanta
  • Publication number: 20120255607
    Abstract: A high surface area scaffold to be used for a solar cell, made of a three-dimensional percolated network of functionalized graphene sheets. It may be used in the preparation of a high surface area electrode by coating with a semi conductive material. Electronic devices can be made therefrom, including solar cells such as dye-sensitized solar cells.
    Type: Application
    Filed: November 18, 2010
    Publication date: October 11, 2012
    Applicant: The Trustees of Princeton University
    Inventors: Joseph Roy-Mayhew, Ilhan Aksay
  • Publication number: 20120258344
    Abstract: Design of a rapidly rechargeable gas battery is disclosed. In one embodiment, a rapidly rechargeable gas battery is constructed of a plurality of high surface area, gas adsorbing electrodes and an electrolyte, wherein, during charging operation, gases are formed and adsorbed at the plurality of electrodes such that they generate an electrochemical potential for discharge of the cell formed by electrodes and electrolyte until the state-of-charge has become negligible (deep discharge). The rapidly rechargeable gas battery is designed such that it can withstand high charging current and a deep discharge without irreversible changes in the electrode materials.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Inventors: Iouri I. Balachov, J. Robert Selman, Ronald H. Wolk
  • Publication number: 20120255616
    Abstract: The present invention relates to a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, to a method for preparing same, and to an organic solar cell having improved photovoltaic conversion efficiency using the same. More particularly, the present invention relates to a metal-oxide/carbon-nanotube composite membrane to be used as a P-type conductive membrane for an organic solar cell, wherein said composite membrane is prepared by dispersing single-walled carbon nanotubes in an organic solvent, adding metal oxides to the mixed solution, dispersing the mixed solution to obtain a composite solution, and depositing the thus-obtained composite solution onto a substrate.
    Type: Application
    Filed: December 20, 2010
    Publication date: October 11, 2012
    Applicant: KOREA INSTITUTE OF MACHINERY AND MATERIALS
    Inventors: Dong Chan Lim, Kyu Hwan Lee, Yong Soo Jeong, Jae Wook Kang, Sun Young Park, Mi Yeong Park, Yeong-Tae Kim, Won Hyun Shim, Kang Ho Choi
  • Patent number: 8283739
    Abstract: Electrical energy generation apparatuses, in which a solar battery device and a piezoelectric device are combined in a single body by using a plurality of nano wires formed of a semiconductor material having piezoelectric properties.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 9, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jun Park, Seung-nam Cha
  • Patent number: 8283091
    Abstract: Provided is a carbon nanofiber, wherein the carbon nanofiber has a surface oxygen content of at least 0.03 calculated by the formula: Oxygen content=[atomic percentage of oxygen/atomic percentage of carbon] using atomic percentages of oxygen and carbon, respectively calculated from an area of an oxygen peak having a binding energy of 524 to 540 eV, an area of a nitrogen peak having a binding energy of 392 to 404 eV, and an area of a carbon peak having a binding energy of 282 to 290 eV in X-ray photoelectron spectroscopy. The nanofibers have high surface oxygen content and may have metal catalyst nano particles densely and uniformly distributed on the outer wall of the carbon nanofibers, thereby having high electrochemical efficiency.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 9, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jeong-hee Lee, Jae-young Choi, Chan-ho Pak, Eun-ju Ra, Young-hee Lee, Kay-hyeok An
  • Publication number: 20120247536
    Abstract: A solar cell module includes a plurality of solar cells, a wavelength conversion layer, and a translucent protection plate. The solar cells are arranged in a plane direction. The wavelength conversion layer is disposed at a light-receiving side of the solar cells to convert a wavelength of light. The protection plate is disposed at a light-receiving side of the wavelength conversion layer. The protection plate has an inclined reflection surface at an end thereof to reflect light, which travels inside of the protection plate to the end of the protection plate, toward the solar cells.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 4, 2012
    Applicants: OSAKA CITY UNIVERSITY, DENSO CORPORATION
    Inventors: Shoichi KAWAI, Susumu SOBUE, Tomomi TAKAGI, DaeGwi KIM
  • Publication number: 20120247556
    Abstract: The present invention relates to a DSC type solar cell comprising a pair of electrodes serving as anode and cathode, respectively, between which an electrolytic solution is arranged, wherein the anode comprises a supporting member on which a metal oxide layer comprising powders of titanium dioxide and nanozeolites is arranged. The average diameter of the powders of titanium dioxide is comprised between 3 and 30 nm and the average diameter of at least the ten percent of the added powders of nanozeolites is comprised between 200 and 400 nm. Thanks to this particular configuration of the anode, the DSC cell of the invention allows to improve the conversion efficiency of the light into electric energy.
    Type: Application
    Filed: November 17, 2010
    Publication date: October 4, 2012
    Applicant: SAES GETTERS S.P.A.
    Inventors: Antonio Bonucci, Roberto Macchi, Roberto Giannantonio
  • Publication number: 20120251881
    Abstract: A galvanic element, for example a battery or an accumulator, in particular a lithium-ion cell, includes a negative electrode, a positive electrode, and a separator lying between the negative electrode and the positive electrode. In order to increase the specific capacitance, the negative electrode includes at least one layer system, said layer system including at least two graphene layers and at least one polymer layer. A polymer layer lies between two graphene layers.
    Type: Application
    Filed: October 28, 2010
    Publication date: October 4, 2012
    Inventors: Thomas Woehrle, Joachim Fetzer
  • Publication number: 20120251887
    Abstract: A novel Magnéli phase nanomaterial with carbon coating is disclosed. The present Magnéli phase material, which can form a nanowire, a nanobelt, a nanoparticle, a nanocrystal, or a nanosheet, includes at least a Magnéli phase core having a substoichiometric composition of titanium oxide having a formula TinO2n-1, where n is between 4 and 10, and at least a carbon-based outer shell surrounding the Magnéli phase core. The shape-features of the carbon-coated Magnéli phase material of the present invention ensure that at least one dimension of it is nanoscale, and therefore has a high surface area. By having the high surface area, the Faradaic reaction can be processed more efficiently, and consequently attain higher capacity, higher power-density, and cycling stability. The present disclosure further encompasses a method of synthesizing these nanoscale Magnéli phase materials.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 4, 2012
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Wei-Qiang Han
  • Publication number: 20120247527
    Abstract: A thermoelectric device and methods thereof. The thermoelectric device includes nanowires, a contact layer, and a shunt. Each of the nanowires includes a first end and a second end. The contact layer electrically couples the nanowires through at least the first end of each of the nanowires. The shunt is electrically coupled to the contact layer. All of the nanowires are substantially parallel to each other. A first contact resistivity between the first end and the contact layer ranges from 10?13 ?-m2 to 10?7 ?-m2. A first work function between the first end and the contact layer is less than 0.8 electron volts. The contact layer is associated with a first thermal resistance ranging from 10?2 K/W to 1010 K/W.
    Type: Application
    Filed: February 1, 2012
    Publication date: October 4, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Matthew L. Scullin, Madhav A. Karri, Adam Lorimer, Sylvain Muckenhirn, Gabriel A. Matus, Justin Tynes Kardel, Barbara Wacker
  • Publication number: 20120251917
    Abstract: Disclosed are a solid oxide fuel cell including: a) an anode support; b) a solid electrolyte layer formed on the anode support; and c) a nanostructure composite cathode layer formed on the solid electrolyte layer, wherein the nanostructure composite cathode layer includes an electrode material and an electrolyte material mixed in molecular scale, which do not react with each other or dissolve each other to form a single material, and a method for fabricating the same. The fuel cell is operable at low temperature and has high performance and superior stability.
    Type: Application
    Filed: January 27, 2012
    Publication date: October 4, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ji-Won SON, Doo Hwan MYUNG, Jaeyeon HWANG, Hae-Weon LEE, Byung Kook KIM, Jong Ho LEE, Hae-Ryoung KIM, Ho Il JI
  • Publication number: 20120247537
    Abstract: A glass system of a solar photovoltaic panel contains: an energy guiding assembly in which two energy collecting layers, two energy converting layers, and an energy storage system are fixed, the energy guiding assembly conducting a light energy in a single direction by ways of nano particles, the two energy collecting layers being provided to collect photon beams of the energy guiding assembly, each energy converting layer transmitting an electrical energy in each energy collecting layer toward the energy storage system. The energy guiding assembly also includes two glass layers on a top surface and a bottom surface of the energy guiding assembly respectively to retain a collecting panel, a reflecting panel, and a plurality of high vision light emit bonding films. The two energy collecting layers and the two energy converting layers cover two outer sides of the energy guiding assembly respectively.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Inventor: Aaron Mei
  • Publication number: 20120251710
    Abstract: The present disclosure provides a method of producing high purity SiOx nanoparticles with excellent volatility and an apparatus for producing the same, which enables mass production of SiOx nanoparticles by melting silicon through induction heating and injecting gas to a surface of the molten silicon. The apparatus includes a vacuum chamber, a graphite crucible into which raw silicon is charged, the graphite crucible being mounted inside the vacuum chamber, an induction melting part which forms molten silicon by induction heating of the silicon material received in the graphite crucible, a gas injector which injects a gas into the graphite crucible to be brought into direct contact with a surface of the molten silicon, and a collector disposed above the graphite crucible and collecting SiOx vapor produced by reaction between the molten silicon and the injected gas.
    Type: Application
    Filed: October 6, 2011
    Publication date: October 4, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Bo-Yun JANG, Jin-Seok LEE, Joon-Soo KIM