Electromagnetic Energy Patents (Class 977/950)

Cross-Reference Art Collections

Laser (Class 977/951)
  • Publication number: 20150146452
    Abstract: A quantum rod luminescent display device includes a first substrate having a plurality of pixel regions; a plurality of first electrodes alternately arranged with a plurality of second electrodes in each of the plurality of pixel regions; a plurality of quantum rod compound layers over the first electrodes and the second electrodes, respectively in each of the plurality of pixel regions, each of the quantum rod compound layers including a quantum rod having a core, a shell surrounding the core, and an electron acceptor; a second substrate facing the first substrate; and a backlight unit at an outer surface of the first substrate. The electron acceptor is attached to or adjacent to the quantum rod.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Kyu-Nam KIM, Jin-Wuk KIM, Byung-Geol KIM, Sung-Woo KIM, Kyung-Kook JANG, Hee-Yeol KIM, Sung-Il WOO
  • Patent number: 9034978
    Abstract: Methods for the synthesis of metal quantum clusters within the framework of a porous gel matrix are described. For example, Ag25(glutathione)18 quantum clusters are synthesized in a cross-linked polyacrylamide gel matrix. The methods can be performed on large-scale and yields monodispersed metal quantum clusters.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 19, 2015
    Assignee: Indian Institute of Technology Madras
    Inventors: Pradeep Thalappil, Udayabhaskararao Thumu
  • Patent number: 9018616
    Abstract: A rectifying antenna device is disclosed. The device comprises a pair of electrode structures, and at least one nanostructure diode contacting at least a first electrode structure of the pair and being at least in proximity to a second electrode structure of the pair. At least one electrode structure of the pair receives AC radiation, and the nanostructure diode(s) at least partially rectifies a current generated by the AC radiation.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 28, 2015
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Yael Hanein, Amir Boag, Jacob Scheuer, Inbal Friedler
  • Patent number: 9012946
    Abstract: A light emitting diode includes a patterned carbon nanotube layer, a first semiconductor layer, a second semiconductor layer, an active layer stacked on an epitaxial growth surface of a substrate in that sequence. A first portion of the patterned carbon nanotube layer is covered by the first semiconductor layer and a second portion of the patterned carbon nanotube layer is exposed. A first electrode is electrically connected with the second semiconductor layer. A second electrode electrically is electrically connected with the second portion of the patterned carbon nanotube layer.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 21, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8994269
    Abstract: A lamp includes a single string of light emitting diodes (LEDs), driven in common, configured to cause the lamp to emit a visible light output via a bulb. The lamp also includes a lighting industry standard lamp base, which has connectors arranged in a standard three-way lamp configuration, for providing electricity from a three-way lamp socket. Circuitry connected to receive electricity from the connectors of the lamp base as standard three-way control setting inputs drives the string of LEDs. The circuitry is configured to detect the standard three-way control setting inputs and to adjust the common drive to the string of LEDs to selectively produce a different visible light outputs of the lamp via the bulb responsive to the three-way control setting inputs. The lamp may also include nanophosphors pumped by emissions of the LEDs, so that the lamp produces a white light output of particularly desirable characteristics.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 31, 2015
    Assignee: Abl IP Holding LLC
    Inventors: David P. Ramer, Jack C. Rains, Jr.
  • Patent number: 8994056
    Abstract: An improved approach is described to implement an LED-based large area display which uses an array of single color solid state lighting elements (e.g. LEDs). In some embodiments, the panel comprises an array of blue LEDs, where each pixel of the array comprises three blue LEDs. An overlay is placed over the array of blue LEDs, where the overlay comprises a printed array of phosphor portions. Each pixel on the PCB comprised of three blue LEDs is matched to a corresponding portion of the overlay having the printed phosphor portions. The printed phosphor portions of the overlay includes a number of regions of blue light excitable phosphor materials that are configured to convert, by a process of photoluminescence, blue excitation light generated by the light sources into green or red and colored light. Regions of the overlay associated with generating blue light comprise an aperture/window that allows blue light to pass through the overlay.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: March 31, 2015
    Assignee: Intematix Corporation
    Inventor: Charles Edwards
  • Publication number: 20150086169
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
    Inventors: CRAIG BREEN, JOHN R. LINTON, JONATHAN S. STECKEL, MARSHALL COX, SETH COE-SULLIVAN, MARK COMERFORD
  • Publication number: 20150083969
    Abstract: A nanocrystal particle including at least one semiconductor material and at least one halogen element, the nanocrystal particle including: a core comprising a first semiconductor nanocrystal; and a shell surrounding the core and comprising a crystalline or amorphous material, wherein the halogen element is present as being doped therein or as a metal halide
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: Hyunki KIM, Shin Ae JUN, Eun Joo JANG, Yongwook KIM, Tae Gon KIM, Yuho WON, Taekhoon KIM, Hyo Sook JANG
  • Patent number: 8987016
    Abstract: The invention relates to light-emitting devices, and related components, systems and methods. In one aspect, the present invention is related to light emitting diode (LED) light extraction efficiency. A non-limiting example, the application teaches a method for improving light emitting diode (LED) extraction efficiency, by providing a nano-rod light emitting diode; providing quantum wells; and reducing the size of said nano-rod LED laterally in the quantum-well plane (x and y), thereby improving LED extraction efficiency.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 24, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Mei-Ling Kuo, Shawn-Yu Lin, Yong Sung Kim, Mei-Li Hsieh
  • Publication number: 20150077970
    Abstract: A light source includes a substrate and a plurality of light emitting devices disposed on the substrate. Each of the light emitting devices is configured to generate a first light. A plurality of quantum-dot devices are respectively disposed on the light emitting devices. The quantum-dot devices are configured to convert the first light to a second light. The quantum-dot devices are configured to be attached to and detached from the light emitting devices, respectively.
    Type: Application
    Filed: March 25, 2014
    Publication date: March 19, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: HanMoe CHA, Seung-Hwa HA, HyunJeong KIM, Sanghyuck YOON
  • Publication number: 20150079716
    Abstract: A light emitting diode includes a substrate, a first-type semiconductor layer, a nanorod layer and a transparent planar layer. The first-type semiconductor layer is disposed over the substrate. The nanorod layer is formed on the first-type semiconductor layer. The nanorod layer includes a plurality of nanorods and each of the nanorods has a quantum well structure and a second-type semiconductor layer. The quantum well structure is in contact with the first-type semiconductor layer, and the second-type semiconductor layer is formed on the quantum well structure. The transparent planar layer is filled between the nanorods. A surface of the second-type semiconductor layer is exposed out of the transparent planar layer.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 19, 2015
    Inventors: Chang-Chin YU, Hsiu-Mu TANG, Mong-Ea LIN
  • Publication number: 20150076137
    Abstract: According to a method for manufacturing a sheet-like heating element and a sheet-like heating element manufactured by the method of the present invention, cubics are pulverized into nanoparticles, the nanoparticle powder is mixed with carbon to become an original yarn, and the original yarn is cut to a length of between 0.2 mm and 0.8 mm and mixed into a pulp liquid to be formed into nanoparticle pulp. The sheet-like heating element forms a space where the particles can be rotated so as to allow 90% or higher far infrared radiation, and thus contributes to the health of users, entails a low defective rate since no bending occurs during the manufacturing, can be manufactured in quantity at low cost, and can be used for multiple purposes.
    Type: Application
    Filed: April 9, 2013
    Publication date: March 19, 2015
    Inventor: Sun Il Kim
  • Patent number: 8981414
    Abstract: A light emitting diode includes a first semiconductor layer, an active layer, a second semiconductor layer and a third semiconductor stacked in that order; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer. The light emitting diode further includes a carbon nanotube layer. The carbon nanotube layer is enclosed in the interior of the first semiconductor layer. The carbon nanotube layer includes a number of carbon nanotubes.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: March 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20150070932
    Abstract: A light source unit includes: a light guiding plate having a front surface and a rear surface facing each other, and a side surface between the front surface and the rear surface; a light guiding bar disposed on the side surface of the light guiding plate; a quantum dot package disposed on a surface of the light guiding bar; and a dot light source which provides light to the quantum dot package.
    Type: Application
    Filed: July 29, 2014
    Publication date: March 12, 2015
    Inventors: Dong Earn KIM, Jeong Hee LEE, Eun Joo JANG, Min Jong BAE, Sang Eui LEE
  • Publication number: 20150063395
    Abstract: An optoelectronic semiconductor chip, based on a nitride material system, comprising at least one active quantum well, wherein during operation electromagnetic radiation is generated in the active quantum well, the active quantum well comprises N successive zones in a direction parallel to a growth direction z of the semiconductor chip, N being a natural number greater than or equal to 2, the zones are numbered consecutively in a direction parallel to the growth direction z, at least two of the zones have average aluminium contents k which differ from one another, and the active quantum well fulfils the condition: 50??(35?k(z))dz?2.5N?1.5?dz?120.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Adrian AVRAMESCU, Désirée Queren, Christoph Eichler, Matthias Sabathil, Stephan Lutgen, Uwe Strauss
  • Publication number: 20150049491
    Abstract: A glass tube including quantum dots under oxygen-free conditions is described. An optical component and other products including such glass tube, a composition including quantum dots, and methods are also disclosed.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: Karthik VENKATARAMAN, John R. LINTON, Robert J. NICK, Abhishek GUPTA
  • Publication number: 20150036797
    Abstract: An intraoral radiation device comprises a biocompatible intraoral receptacle with an X-ray source therein.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Inventor: EHUD NACHALIEL
  • Publication number: 20150014586
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, CRAIG BREEN
  • Publication number: 20150014629
    Abstract: A coated quantum dot and methods of making coated quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Inventors: CRAIG BREEN, WENHAO LIU
  • Publication number: 20150002788
    Abstract: A process for manufacturing a liquid crystal display panel, a display device and a monochromatic quantum dot layer are disclosed; in the liquid crystal display panel, a plurality of pixel units are defined on the liquid crystal display panel, each pixel unit having sub-pixel units displaying different colors, at a position of the apposing substrate or the array substrate corresponding to a sub-pixel unit of at least one color in each pixel unit, a monochromatic quantum dot layer is disposed. Dispersing of monochromatic quantum dots with a macromolecular polymer network can prevent the quantum dots from aggregation and increase the quantum yield of the quantum dots, so as to increase the light efficacy of quantum excitation, as well as avoiding the contact between the monochromatic quantum dots with oxygen and increasing the life of quantum dots.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 1, 2015
    Inventors: Renwei Guo, Xue Dong
  • Patent number: 8919997
    Abstract: A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seoung-Jae Im, Seo-Young Choi, Eun-Joo Jang
  • Patent number: 8919998
    Abstract: A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seoung-Jae Im, Seo-Young Choi, Eun-Joo Jang
  • Publication number: 20140367721
    Abstract: A device that emits light in response to an electrical or optical excitation, such as LEDs, displays, e-readers, device includes at least one anisotropic flat colloidal semiconductor nanocrystal whose smallest dimension, namely the thickness, is smaller than the other two by a factor of at least 1.5, the emitted light having an intensity and a polarization that vary according to the angle formed by the light emitting direction and the normal to the largest surface of the flat nanocrystal. The device allows to realize a light-emitting device exhibiting simultaneously a high emission spectral finesse and allows proper control of the wavelength, the directivity and/or polarization of the emitted light, and thus increases the brightness and color gamut of displays composed of such a device. Such devices are found for example in displays, televisions, mobile phones, tablets, or computers. The various embodiments of these devices are also presented.
    Type: Application
    Filed: July 11, 2014
    Publication date: December 18, 2014
    Applicant: NEXDOT
    Inventors: Benoit MAHLER, Thomas PONS, Elsa CASSETTE
  • Publication number: 20140367727
    Abstract: A light-emitting device includes a first conductive semiconductor layer formed on a substrate, a mask layer formed on the first conductive semiconductor layer and having a plurality of holes, a plurality of vertical light-emitting structures vertically grown on the first conductive semiconductor layer through the plurality of holes, a current diffusion layer surrounding the plurality of vertical light-emitting structures on the first conductive semiconductor layer, and a dielectric reflector filling a space between the plurality of vertical light-emitting structures on the current diffusion layer.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Dong-Hoon LEE, Geon-Wook YOO, Nam-Goo CHA, Kyung-Wook HWANG
  • Publication number: 20140353579
    Abstract: The present invention relates to colloidal quantum dots, to a process for producing such colloidal quantum dots, to the use thereof and to optoelectronic components comprising colloidal quantum dots.
    Type: Application
    Filed: April 3, 2014
    Publication date: December 4, 2014
    Inventors: Tonino Greco, Christian Ippen, Armin Wedel
  • Patent number: 8895997
    Abstract: A plurality of electrodes, and carbon nanotubes disposed between the electrodes, at least part of the carbon nanotubes including a metal carbon nanotube are provided. The metal carbon nanotube generates heat upon passing of current to the electrodes and emits light by blackbody radiation, so that the emitted light has a wide emission wavelength region and can be modulated at high speed. This makes it possible to implement a continuum spectrum light source that can be modulated at high speed, which is suitable for use in information communication, electrical and electronic fields.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: November 25, 2014
    Assignee: Keio University
    Inventors: Hideyuki Maki, Youhei Yamauchi
  • Publication number: 20140338735
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid
  • Publication number: 20140339592
    Abstract: A light emitting diode includes a patterned carbon nanotube layer, a first semiconductor layer, a second semiconductor layer, an active layer stacked on an epitaxial growth surface of a substrate in that sequence. A first portion of the patterned carbon nanotube layer is covered by the first semiconductor layer and a second portion of the patterned carbon nanotube layer is exposed. A first electrode is electrically connected with the second semiconductor layer. A second electrode electrically is electrically connected with the second portion of the patterned carbon nanotube layer.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Publication number: 20140340865
    Abstract: A lighting device is provided, comprising: a light-emitting arrangement comprising a solid state light source capable of emitting light of a first wavelength range, and having a light outcoupling surface; and a polarizing color converting layer (104) arranged to receive light that is outcoupled from said light outcoupling surface, and comprising i) a color converting elements (105) capable of converting light of said first wavelength range into light of a second wavelength range, and ii) at least one region of an optically anisotropic material (108), and at least one region of an optically isotropic material (109), wherein said polarizing color converting layer is capable of preferentially scattering one linear polarization direction of light received from the light-emitting arrangement. The lighting device of the invention provides improved polarization efficiency. The lighting device may be used as a backlight in a display device, e.g. LCD device.
    Type: Application
    Filed: September 26, 2012
    Publication date: November 20, 2014
    Applicant: Koninklijke Philips N.V.
    Inventors: Rifat Ata Mustafa Hikmet, Ties Van Bommel
  • Publication number: 20140333977
    Abstract: Provided is a display device. The display device includes a backlight unit generating a plurality of flat lights and a spatial light modulator (SLM) unit generating an interference pattern by using the plurality of lights according to hologram data and displaying a hologram based on the generated interference pattern. The backlight unit is manufactured as an organic light emitting diode including a plurality of quantum dots.
    Type: Application
    Filed: March 14, 2014
    Publication date: November 13, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chi-Sun HWANG, Hye Yong CHU, Jong Sool JEONG
  • Publication number: 20140326947
    Abstract: A light emitting diode includes a first semiconductor layer, an active layer, a second semiconductor layer and a third semiconductor stacked in that order; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer. The light emitting diode further includes a carbon nanotube layer. The carbon nanotube layer is enclosed in the interior of the first semiconductor layer. The carbon nanotube layer includes a number of carbon nanotubes.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Publication number: 20140326921
    Abstract: The invention relates to a continuous-flow synthesis process for the preparation of high quality indium phosphide/zinc sulfide core/shell semiconduting nanocrystals in particular quantum dots (QD) conducted in a micro-reaction system comprising at least one mixing chamber connected to one reaction chamber.
    Type: Application
    Filed: November 26, 2012
    Publication date: November 6, 2014
    Inventors: Huachang Lu, Werner Hoheisel, Leslaw Mleczko, Stephan Nowak
  • Patent number: 8872213
    Abstract: A semiconductor light emitting device includes: a package which is made of a resin and includes a recess; a lead frame exposed to a bottom of the recess; a semiconductor light emitting element connected to the lead frame in the recess; a phosphor layer over the bottom of the recess; and a second resin layer above the phosphor layer and the semiconductor light emitting element, in which the phosphor layer contains a semiconductor fine particle having an excitation fluorescence spectrum which changes according to a particle size, and the phosphor layer includes a water-soluble or water-dispersible material.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventors: Shinji Yoshida, Kazuhiko Yamanaka
  • Patent number: 8866479
    Abstract: Casting compound suitable for casting an electronic module, in particular a large-volume coil such as a gradient coil, which is composed of a support material forming a matrix, one or more fillers made of inorganic microparticles, and at least one filler made of polymer nanoparticles.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: October 21, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Groeppel, Juergen Huber, Gerhard Piecha, Lothar Schoen, Matthias Uebler
  • Patent number: 8866065
    Abstract: Described herein is a nanowire array, comprising a substrate, a plurality of fluorescent nanowires extending essentially perpendicularly from the substrate and a reflective layer disposed on the substrate in areas between the fluorescent nanowires; wherein the fluorescent nanowires are operable to fluoresce at a wavelength of a collective mode of the nanowire array.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 21, 2014
    Assignee: Zena Technologies, Inc.
    Inventor: Munib Wober
  • Patent number: 8847265
    Abstract: A light-emitting device includes a first conductive semiconductor layer formed on a substrate, a mask layer formed on the first conductive semiconductor layer and having a plurality of holes, a plurality of vertical light-emitting structures vertically grown on the first conductive semiconductor layer through the plurality of holes, a current diffusion layer surrounding the plurality of vertical light-emitting structures on the first conductive semiconductor layer, and a dielectric reflector filling a space between the plurality of vertical light-emitting structures on the current diffusion layer.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-hoon Lee, Geon-wook Yoo, Nam-goo Cha, Kyung-wook Hwang
  • Publication number: 20140284319
    Abstract: An electric heater includes a base, a bracket, a working head and a protecting structure. The bracket is disposed on the base. The working head is disposed on the bracket. The working head includes a supporter and a heating module. The heating module is disposed on the supporter. The heating module includes a heating element and at least two electrodes. The at least two electrodes are electrically connected with the heating element. The heating element includes a carbon nanotube layer structure. The protecting structure covers the heating module.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: CHEN FENG, KAI-LI JIANG, LIANG LIU, SHOU-SHAN FAN
  • Publication number: 20140286049
    Abstract: A backlight unit includes a light source which generates a first light; a quantum dots member which is spaced apart from the light source by a first distance and converts the first light into a second light; a guide member which lengthwise extends in a first direction and fixes positions of the light source and the quantum dots member; and an optical member which reflects the second light. The guide member guides the first light from the light source to the quantum dots member and guides the second light from the quantum dots member to the optical member.
    Type: Application
    Filed: September 3, 2013
    Publication date: September 25, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: HanMoe CHA, Seung-Hwa HA, Kyung-Min KIM, DONGHOON KIM, Young-Jun SEO
  • Publication number: 20140284551
    Abstract: A semiconductor device includes a plurality of first conductivity type semiconductor nanowire cores located over a support, and an insulating mask layer located over the support. The nanowire cores include semiconductor nanowires epitaxially extending from portions of a semiconductor surface of the support exposed through openings in the insulating mask layer. The device also includes a plurality of second conductivity type semiconductor shells extending over and around the respective nanowire cores, a first electrode layer that contacts the second conductivity type semiconductor shells and extends into spaces between the semiconductor shells, and an insulating layer located between the insulating mask layer and the first electrode in the spaces between the semiconductor shells.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Scott Brad Herner, Cynthia Lemay, Carl Patrik Theodor Svensson, Linda Romano
  • Patent number: 8841151
    Abstract: A method of manufacturing a device based on LEDs includes the growth of semiconducting nanowires on a first electrode produced on an insulating face, and encapsulation thereof in planarizing material; the formation, on the planarizing material, of a second electrode with contact take-up areas. LEDs are formed by releasing a band of the first electrode around each take-up area, including forming a mask defining the bands on the second electrode, chemically etching the planarizing material, stopped so as to preserve planarizing material, chemically etching the portion of nanowires thus released, and then chemically etching the remaining planarizing material. A trench is formed along each of the bands as far as the insulating face and the LEDs are placed in series by connecting the take-up areas and bands of the first electrode.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: September 23, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Adrien Gasse, Philippe Gilet
  • Publication number: 20140270087
    Abstract: An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicants: SRI INTERNATIONAL, Samsung Electronics Co., Ltd.
    Inventors: Shang-hyeun PARK, Paul R. SCHWOEBEL, Il-hwan KIM, Do-yoon KIM, Yong-chul KIM, Chang-soo LEE, Tae-won JEONG
  • Publication number: 20140264259
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; a first node that comprises a first semiconductor; where the first node contacts a radial surface of the one-dimensional semiconducting nanoparticle producing a first heterojunction at the point of contact; and a second node that comprises a second semiconductor; where the second node contacts the radial surface of the one-dimensional semiconducting nanoparticle producing a second heterojunction at the point of contact; where the first heterojunction is compositionally different from the second heterojunction.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, Kishori Deshpande, Jake Joo
  • Patent number: 8829652
    Abstract: A light emitting device with graded composition hole tunneling layer is provided. The device comprises a substrate and an n-type semiconductor layer is disposed on the substrate, in which the n-type semiconductor layer comprises a first portion and a second portion. A graded composition hole tunneling layer is disposed on the first portion of the n-type semiconductor layer. An electron blocking layer is disposed on the graded composition hole tunneling layer. A p-type semiconductor layer is disposed on the electron blocking layer. A first electrode is disposed on the p-type semiconductor layer, and a second electrode is disposed on the second portion of the n-type semiconductor layer and is electrical insulated from the first portion of the n-type semiconductor. The graded composition hole tunneling layer is used as the quantum-well to improve the transport efficiency of the holes to increase the light emitting efficiency of the light emitting device.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: September 9, 2014
    Assignee: National Chiao Tung University
    Inventors: Chao-Hsun Wang, Hao-Chung Kuo
  • Publication number: 20140246684
    Abstract: An embodiment relates to a nanowire-containing LED device with optical feedback comprising a substrate, a nanowire protruding from a first side the substrate, an active region to produce light, a optical sensor and a electronic circuit, wherein the optical sensor is configured to detect at least a first portion of the light produced in the active region, and the electronic circuit is configured to control an electrical parameter that controls a light output of the active region. Yet, another embodiment relates to an image display having the nanowire-containing LED device with optical feedback.
    Type: Application
    Filed: May 9, 2014
    Publication date: September 4, 2014
    Applicant: ZENA TECHNOLOGIES, INC.
    Inventor: Munib Wober
  • Publication number: 20140239327
    Abstract: The device according to the invention comprises a nanostructured LED with a first group of nanowires protruding from a first area of a substrate and a contacting means in a second area of the substrate. Each nanowire of the first group of nanowires comprises a p-i-n-junction and a top portion of each nanowire or at least one selection of nanowires is covered with a light reflecting contact layer. The contacting means of the second area is in electrical contact with the bottom of the nanowires, the light-reflecting contact layer being in electrical contact with the contacting means of the second area via the p-i-n-junction. Thus when a voltage is applied between the contacting means of the second area and the light-reflecting contact layer, light is generated within the nanowire. On top of the light-reflecting contact layer, a first group of contact pads for flip-chip bonding can be provided, distributed and separated to equalize the voltage across the layer to reduce the average serial resistance.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 28, 2014
    Applicant: GLO AB
    Inventors: Steven Konsek, Jonas Ohlsson, Yourii Martynov, Peter Hanberg
  • Publication number: 20140231409
    Abstract: The present disclosure relates to a method for heating an object. A sheet-shaped heat and light source is provided. The sheet-shaped heat and light source includes a carbon nanotube film curved to form a hollow cylinder, and at least two electrodes spaced from each other, located on a surface of the hollow cylinder and electrically connected to the carbon nanotube film. An object is located in the hollow cylinder. A voltage is supplied between the at least two electrodes.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: CHANG-HONG LIU, SHOU-SHAN FAN
  • Patent number: 8809889
    Abstract: A light emitting diode package includes a light emitting diode, an insulating layer, a plurality of light emitting particles, and a plurality of metal particles. The light emitting diode is configured to emit first light of a first wavelength in a visible light range. The insulating layer is disposed on the light emitting diode. The plurality of light emitting particles is dispersed in the insulating layer and is configured to receive the first light to generate a second light of a second wavelength different from the first wavelength. The plurality of metal particles is dispersed in the insulating layer, and is configured to receive at least one light component of the first light and the second light to cause, at least in part, surface plasmon resonance, the surface plasmon resonance being configured to yield a resonance wave comprising a peak wavelength in the range of the second wavelength.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: August 19, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Baek Hee Lee, Jong Hyuk Kang, Junghyun Kwon, Minki Nam, Jae Byung Park, Seon-Tae Yoon, Dong-Hoon Lee
  • Publication number: 20140226105
    Abstract: A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seoung-Jae IM, Seo-Young CHOI, Eun-Joo JANG
  • Publication number: 20140225150
    Abstract: The disclosure provides a light-emitting diode and a method for manufacturing the same. The light-emitting diode comprises a N-type metal electrode, a N-type semiconductor layer contacted with the N-type metal electrode, a P-type semiconductor layer, a light-emitting layer interposed between the N-type semiconductor layer and the P-type semiconductor layer, a low-contact-resistance material layer positioned on the P-type semiconductor layer, a transparent conductive layer covered the low-contact-resistance material layer and the P-type semiconductor layer, and a P-type metal electrode positioned on the transparent conductive layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: Lextar Electronics Corporation
    Inventors: Chia-Lin HSIAO, Nai-Wei Hsu, Te-Chung Wang, Tsung-Yu Yang
  • Publication number: 20140226109
    Abstract: A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seoung-Jae IM, Seo-Young CHOI, Eun-Joo JANG