Electromagnetic Energy Patents (Class 977/950)

Cross-Reference Art Collections

Laser (Class 977/951)
  • Publication number: 20140239327
    Abstract: The device according to the invention comprises a nanostructured LED with a first group of nanowires protruding from a first area of a substrate and a contacting means in a second area of the substrate. Each nanowire of the first group of nanowires comprises a p-i-n-junction and a top portion of each nanowire or at least one selection of nanowires is covered with a light reflecting contact layer. The contacting means of the second area is in electrical contact with the bottom of the nanowires, the light-reflecting contact layer being in electrical contact with the contacting means of the second area via the p-i-n-junction. Thus when a voltage is applied between the contacting means of the second area and the light-reflecting contact layer, light is generated within the nanowire. On top of the light-reflecting contact layer, a first group of contact pads for flip-chip bonding can be provided, distributed and separated to equalize the voltage across the layer to reduce the average serial resistance.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 28, 2014
    Applicant: GLO AB
    Inventors: Steven Konsek, Jonas Ohlsson, Yourii Martynov, Peter Hanberg
  • Publication number: 20140231409
    Abstract: The present disclosure relates to a method for heating an object. A sheet-shaped heat and light source is provided. The sheet-shaped heat and light source includes a carbon nanotube film curved to form a hollow cylinder, and at least two electrodes spaced from each other, located on a surface of the hollow cylinder and electrically connected to the carbon nanotube film. An object is located in the hollow cylinder. A voltage is supplied between the at least two electrodes.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: CHANG-HONG LIU, SHOU-SHAN FAN
  • Patent number: 8809889
    Abstract: A light emitting diode package includes a light emitting diode, an insulating layer, a plurality of light emitting particles, and a plurality of metal particles. The light emitting diode is configured to emit first light of a first wavelength in a visible light range. The insulating layer is disposed on the light emitting diode. The plurality of light emitting particles is dispersed in the insulating layer and is configured to receive the first light to generate a second light of a second wavelength different from the first wavelength. The plurality of metal particles is dispersed in the insulating layer, and is configured to receive at least one light component of the first light and the second light to cause, at least in part, surface plasmon resonance, the surface plasmon resonance being configured to yield a resonance wave comprising a peak wavelength in the range of the second wavelength.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: August 19, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Baek Hee Lee, Jong Hyuk Kang, Junghyun Kwon, Minki Nam, Jae Byung Park, Seon-Tae Yoon, Dong-Hoon Lee
  • Publication number: 20140226109
    Abstract: A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seoung-Jae IM, Seo-Young CHOI, Eun-Joo JANG
  • Publication number: 20140226105
    Abstract: A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4?E*ab±2?E*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seoung-Jae IM, Seo-Young CHOI, Eun-Joo JANG
  • Publication number: 20140225150
    Abstract: The disclosure provides a light-emitting diode and a method for manufacturing the same. The light-emitting diode comprises a N-type metal electrode, a N-type semiconductor layer contacted with the N-type metal electrode, a P-type semiconductor layer, a light-emitting layer interposed between the N-type semiconductor layer and the P-type semiconductor layer, a low-contact-resistance material layer positioned on the P-type semiconductor layer, a transparent conductive layer covered the low-contact-resistance material layer and the P-type semiconductor layer, and a P-type metal electrode positioned on the transparent conductive layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: Lextar Electronics Corporation
    Inventors: Chia-Lin HSIAO, Nai-Wei Hsu, Te-Chung Wang, Tsung-Yu Yang
  • Patent number: 8804242
    Abstract: A polarizer includes a substrate, a carbon nanotube film, and a number of metal particles. The carbon nanotube film is located over the substrate and includes a number of carbon nanotube yarns, each of which comprises a number of substantially parallelly bundled carbon nanotubes. The metal particles are adhered to the carbon nanotubes of the carbon nanotube film.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: August 12, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Sei-Ping Louh
  • Publication number: 20140203213
    Abstract: Methods for the synthesis of metal quantum clusters within the framework of a porous gel matrix are described. For example, Ag25(glutathione)18 quantum clusters are synthesized in a cross-linked polyacrylamide gel matrix. The methods can be performed on large-scale and yields monodispersed metal quantum clusters.
    Type: Application
    Filed: December 22, 2011
    Publication date: July 24, 2014
    Applicant: INDIAN INSTITUTE OF TECHNOLOGY MADRAS
    Inventors: Pradeep Thalappil, Udayabhaskararao Thumu
  • Patent number: 8779458
    Abstract: A light emitting diode includes a first semiconductor layer, an active layer, a second semiconductor layer, an upper electrode, and a lower electrode. The active layer is sandwiched between the first semiconductor layer and the second semiconductor layer. The lower electrode is electrical connected with the first semiconductor layer, and the upper electrode is electrical connected with the second semiconductor layer. A surface of the second semiconductor layer away from the active layer is used as the light extraction surface. A surface of the first semiconductor layer connected with the lower electrode is a patterned surface comprising a plurality of grooves.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 15, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8778226
    Abstract: A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 15, 2014
    Inventors: Ilia N. Ivanov, Alexander A. Puretzky, Bin Zhao, David B. Geohegan, David J. Styers-Barnett, Hui Hu
  • Patent number: 8772762
    Abstract: Provided is an organic electroluminescent device including: a substrate (11, 101); a first electrode (12, 102) formed on the substrate (11, 101) and including a pixel region; a partition wall (23, 203) formed on the substrate (11, 101), partitioning the first electrode (12, 102), and including a surface with a recessed and projected form; a luminescent medium layer (19, 109) formed on the pixel region and the partition wall (23, 203), a film thickness of the partition wall (23, 203) being uneven according to the recessed and projected form; and a second electrode (17, 107) formed on the luminescent medium layer (19, 109).
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Shingo Kaneta, Yuki Yasu, Ryo Syoda, Noriko Morikawa, Eiichi Kitazume
  • Publication number: 20140183582
    Abstract: A light emitting diode package includes a light emitting diode, an insulating layer, a plurality of light emitting particles, and a plurality of metal particles. The light emitting diode is configured to emit first light of a first wavelength in a visible light range. The insulating layer is disposed on the light emitting diode. The plurality of light emitting particles is dispersed in the insulating layer and is configured to receive the first light to generate a second light of a second wavelength different from the first wavelength. The plurality of metal particles is dispersed in the insulating layer, and is configured to receive at least one light component of the first light and the second light to cause, at least in part, surface plasmon resonance, the surface plasmon resonance being configured to yield a resonance wave comprising a peak wavelength in the range of the second wavelength.
    Type: Application
    Filed: April 26, 2013
    Publication date: July 3, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Baek Hee Lee, Jong Hyuk Kang, Junghyun Kwon, Minki Nam, Jae Byung Park, Seon-Tae Yoon, Dong-Hoon Lee
  • Publication number: 20140170789
    Abstract: Ceramic compositions having a dispersion of nano-particles therein and methods of fabricating ceramic compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and ceramic precursor molecules. A ceramic matrix is formed from the ceramic precursor molecules. The ceramic matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including ceramic precursor molecules. The medium is a liquid or gel at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 19, 2014
    Inventors: Juanita N. KURTIN, Georgeta MASSON
  • Publication number: 20140158937
    Abstract: A process of synthesizing nanocrystals, the process including contacting a first precursor, a ligand compound, and a second precursor in a solvent having a boiling point of less than or equal to about 150° C. and a polarity index of less than or equal to 5, and performing a thermal decomposition reaction between the first precursor and the second precursor at a higher pressure than atmospheric pressure and at a higher temperature than a boiling point of the solvent, wherein at least one of the first precursor and the second precursor is a metal-containing precursor.
    Type: Application
    Filed: May 29, 2013
    Publication date: June 12, 2014
    Inventors: Eun Joo JANG, Hyo Sook JANG, Won Joo LEE
  • Publication number: 20140141555
    Abstract: A light emitting diode (LED) structure includes a plurality of devices arranged side by side on a support layer. Each device includes a first conductivity type semiconductor nanowire core and an enclosing second conductivity type semiconductor shell for forming a pn or pin junction that in operation provides an active region for light generation. A first electrode layer extends over the plurality of devices and is in electrical contact with at least a top portion of the devices to connect to the shell. The first electrode layer is at least partly air-bridged between the devices.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicant: GLO AB
    Inventor: Truls Lowgren
  • Publication number: 20140138620
    Abstract: A LED structure includes a support and a plurality of nanowires located on the support, where each nanowire includes a tip and a sidewall. A method of making the LED structure includes reducing or eliminating the conductivity of the tips of the nanowires compared to the conductivity of the sidewalls during or after creation of the nanowires.
    Type: Application
    Filed: October 22, 2013
    Publication date: May 22, 2014
    Applicant: Glo AB
    Inventors: Carl Patrik Theodor Svensson, Nathan Gardner
  • Publication number: 20140134769
    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may have one or more intermediate electrical contacts that are physically and electrically connected to sidewalls of the array of nanostructures. The contacts may allow different photo-active regions of the optoelectronic device to be independently controlled. For example, one color light may be emitted or detected independently of another using the same group of one or more nanostructures. The optoelectronic device may be a pixilated device that may serve as an LED display or imaging sensor. The pixilated device may have an array of nanostructures with alternating rows and columns of sidewall electrical contacts at different layers. A pixel may be formed at the intersection of a row contact and a column contact. As one example, a single group of one or more nanostructures has a blue sub-pixel, a green sub-pixel, and a red sub-pixel.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: Sundiode Inc.
    Inventors: James C. Kim, Sungsoo Yi, Danny E. Mars
  • Publication number: 20140131656
    Abstract: A light emitting diode chip includes a sapphire substrate and a plurality of carbon nano-tubes arranged on an upper surface of the sapphire substrate. Gaps are formed between two adjacent carbon nano-tubes to expose parts of the upper surface of the sapphire substrate. An un-doped GaN layer is formed on the exposed parts of the upper surface of the sapphire substrate and covers the carbon nano-tubes. An n-type GaN layer, an active layer and a p-type GaN layer are formed on the un-doped GaN layer in sequence. A method for manufacturing the light emitting diode chip is also provided.
    Type: Application
    Filed: August 30, 2013
    Publication date: May 15, 2014
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: YA-WEN LIN, CHING-HSUEH CHIU, PO-MIN TU, SHIH-CHENG HUANG
  • Publication number: 20140125532
    Abstract: A tattooed antenna and antenna system are disclosed. The tattooed antenna includes one or more nanoparticles in a fluid. The one or more nanoparticles are configured to be injected as a tattoo into a body to thereby form an antenna configured to transmit data received from a source. The antenna system may include feed system that drives the tattooed antenna. The tattooed antenna may be a feed pickup antenna and/or a radiating antenna.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Inventors: Cynthia Furse, Patrick A. Tresco
  • Publication number: 20140110663
    Abstract: A light emitting device includes a nano-structure, a first semiconductor layer on the nano-structure, an active layer on the first semiconductor layer, and a second conductive semiconductor layer on the active layer. The nano-structure includes a graphene layer provided under the first semiconductor layer to make contact with the first semiconductor layer; and a plurality of nano-textures extending from a top surface of the graphene layer to the first semiconductor layer and in contact with the first semiconductor layer.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Inventors: Jae Hoon CHOI, Buem Yeon Lee, Ki Young Song, Rak Jun Choi
  • Patent number: 8692716
    Abstract: A method of fabricating an antenna. In one embodiment, the method includes the steps of providing a substrate treated with a plasma treatment, providing a nanoparticle ink comprising nanoparticles, painting the nanoparticle ink on the substrate to form an antenna member in which the nanoparticles are connected, determining a feed point of the antenna member, and attaching an feeding port onto the substrate at the feed point to establish a contact between the feeding port and the antenna member.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 8, 2014
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Hussain Al-Rizzo, Taha Elwi, Daniel Rucker
  • Publication number: 20140091257
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Application
    Filed: August 7, 2013
    Publication date: April 3, 2014
    Applicant: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Picket
  • Publication number: 20140091284
    Abstract: An organic light emitting diode includes a substrate, a first electrode, an organic functional layer; and a second electrode. One of the first electrode and the second electrode includes a treated patterned carbon nanotube film. The treated patterned carbon nanotube film includes at least two carbon nanotube linear units spaced from each other; and carbon nanotube groups spaced from each other. The carbon nanotube groups are located between the at least two carbon nanotube linear units, and combined with the at least two carbon nanotube linear units.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 3, 2014
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventors: CHEN FENG, YU-QUAN WANG, LI QIAN
  • Publication number: 20140084243
    Abstract: A light emitting diode including a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The first semiconductor layer includes a first surface and a second surface. The active layer and the second semiconductor layer are stacked on the second surface in that order, and a surface of the second semiconductor layer away from the active layer is configured as the light emitting surface. A first electrode is electrically connected with and covers the first surface of the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and a surface of the active layer, and a cross section of each of the three-dimensional nano-structure is M-shaped.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: ZHEN-DONG ZHU, QUN-QING LI, LI-HUI ZHANG, MO CHEN, SHOU-SHAN FAN
  • Patent number: 8674328
    Abstract: A method of fabricating a nanodevice includes providing a nanowire having a first portion and a second portion. The nanowire has a polymer coating. A nanostructure is provided that is proximate to the second portion of the nanowire. Solely the first portion of the nanowire is irradiated with near-infrared radiation, thereby exciting the first portion to generate ultraviolet radiation. The generated ultraviolet radiation is guided from the first portion along the nanowire toward the second portion, so that a region of the polymer coating on the second portion is polymerized and bonds the nanostructure to the nanowire.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: March 18, 2014
    Assignee: University of Maryland College Park
    Inventors: John T. Fourkas, Linjie Li, Sanghee Nah
  • Publication number: 20140070251
    Abstract: The invention provides a reflective phase retarder and a semiconductor light-emitting device including such reflective phase retarder. The reflective phase retarder of the invention converts an incident light beam with a first type polarization into the light with a second type polarization, and reflects the converted light beam with the second type polarization out.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 13, 2014
    Applicant: NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY
    Inventor: Yi-Jun Jen
  • Patent number: 8669546
    Abstract: A nitride group semiconductor light emitting device includes a substrate, n-type and p-type semiconductor layers, and an active region. The n-type and p-type semiconductor layers are formed on or above the substrate. The active region is interposed between the n-type and p-type semiconductor layers. The active region includes barrier layers that are included in a multiquantum well structure, and an end barrier layer that has a thickness greater than the barrier layer, and is arranged closest to the p-type semiconductor layer. The average thickness of the last two barrier layers that are arranged adjacent to the end barrier layer is smaller than the average thickness of the other barrier layers among the thicknesses of the barrier layers that are included in the multiquantum well structure.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 11, 2014
    Assignee: Nichia Corporation
    Inventor: Yasuhisa Kotani
  • Publication number: 20140048726
    Abstract: Nano-antennas with a resonant frequency in the optical or near infrared region of the electromagnetic spectrum and methods of making the nano-antennas are described. The nano-antenna includes a porous membrane, a plurality of nanowires disposed in the porous membrane, and a monolayer of nanospheres each having a diameter that is substantially the same as a diameter of the nanowires. The nanospheres are electrically in series with the nanowires.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Christopher J. Rothfuss
  • Patent number: 8653538
    Abstract: Disclosed herein is a rod type light emitting device and method for fabricating the same, wherein a plurality of rod structures is sequentially formed with a semiconductor layer doped with a first polarity dopant, an active layer, and a semiconductor layer doped with a second polarity dopant.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: February 18, 2014
    Assignees: LG Electronics Inc., LG Innotek Co., Ltd.
    Inventors: Jun Seok Ha, Jong Wook Kim
  • Publication number: 20140027808
    Abstract: A Si-based light emitting diode structure and a method for fabricating the Si-based light emitting diode structure are each predicated upon a multilayer material layer that comprises alternating, interposed and laminated sub-layers of: (1) a group IV nanocrystal material; and (2) an erbium or neodymium doped dielectric material. The light emitting diode structure is preferably laterally actuated to provide both efficient photoluminescence and electroluminescence. The group IV nanocrystal material may comprise a silicon nanocrystal material and the doped dielectric material may comprise an erbium doped silicon oxide material.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Karl S. Ni, Halina Krzyzanowska, Yijing Fu, Philippe M. Fauchet
  • Publication number: 20140030600
    Abstract: A graphene sheet including a lower sheet including 1 to 20 layers of graphene, and a ridge formed on the lower sheet and including more layers of the graphene compared with the lower sheet, the ridge having a shape of a grain boundary of a metal, a transparent electrode and an active layer including the same, and a display, an electronic device, an optoelectronic device, a battery, a solar cell, and a dye-sensitized solar cell including the transparent electrode and/or the active layer are provided.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: UNIST Academy-Industry Research Corporation
    Inventors: Soon-Yong Kwon, Kibog Park, Sung Youb Kim, Jin-Sung Kwak
  • Patent number: 8633467
    Abstract: A light emitting diode includes a second electrode, a first semiconductor layer, an active layer, a second semiconductor layer, a reflector, and a first electrode. The second electrode, the first semiconductor layer, the active layer, the second semiconductor layer, and the reflector are stacked on the first electrode in that order. The first semiconductor layer defines a plurality of grooves on a surface contacting the second electrode. The plurality of grooves form a patterned surface used as the light extraction surface. A carbon nanotube layer is located on the patterned surface and embedded into the grooves.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: January 21, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20140014901
    Abstract: A light emitting diode includes a first semiconductor layer, an active layer, a second semiconductor layer and a third semiconductor stacked in that order; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer. The light emitting diode further includes a carbon nanotube layer. The carbon nanotube layer is enclosed in the interior of the first semiconductor layer. The carbon nanotube layer includes a number of carbon nanotubes.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 16, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Publication number: 20140014983
    Abstract: An improved approach is described to implement an LED-based large area display which uses an array of single color solid state lighting elements (e.g. LEDs). In some embodiments, the panel comprises an array of blue LEDs, where each pixel of the array comprises three blue LEDs. An overlay is placed over the array of blue LEDs, where the overlay comprises a printed array of phosphor portions. Each pixel on the PCB comprised of three blue LEDs is matched to a corresponding portion of the overlay having the printed phosphor portions. The printed phosphor portions of the overlay includes a number of regions of blue light excitable phosphor materials that are configured to convert, by a process of photoluminescence, blue excitation light generated by the light sources into green or red and colored light. Regions of the overlay associated with generating blue light comprise an aperture/window that allows blue light to pass through the overlay.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Inventor: Charles Edwards
  • Publication number: 20140016351
    Abstract: A light source module includes a light source unit which generates a light; a light emitting part spaced apart from the light source unit and comprising a light emitting surface; and a light transmitting part which transmits the light generated by the light source unit to the light emitting part. The light emitting part emits the light transmitted by the light transmitting part, through the light emitting surface.
    Type: Application
    Filed: November 17, 2012
    Publication date: January 16, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Chan-Jae PARK, Seung-Hwan BAEK, Youn-Ho HAN, Seok-Hyun NAM, Sang-Won LEE, Young-Keun LEE
  • Publication number: 20140009955
    Abstract: An optical structure can include a nanocrystal on a surface of an optical waveguide in a manner to couple the nanocrystal to the optical field of light propagating through the optical waveguide to generate an emission from the nanocrystal.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 9, 2014
    Inventors: Vladimir Bulovic, Ioannis Kymissis, Moungi G. Bawendi, Jonathan R. Tischler, Michael Scott Bradley, David Oertel, Jennifer Yu
  • Patent number: 8625194
    Abstract: A semiconductor optical amplifier includes an input-side optical amplifier waveguide section that has a first active core layer. An output-side optical amplifier waveguide section connects to the input-side optical amplifier waveguide section and has a second active core layer that is wider than the first active core layer. The width of the first active core layer and relative refractive index difference between the first active core layer and adjacent clad section in the width direction of the first active core layer, and the width of the second active core layer and relative refractive index difference between the second active core layer and adjacent clad section in the width direction of the second active core layer are set such that the carrier density and optical confinement factor in the first active core layer are higher than the carrier density and optical confinement factor in the second active core layer.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: January 7, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Hideaki Hasegawa
  • Publication number: 20130341658
    Abstract: A light-emitting device includes a first conductive semiconductor layer formed on a substrate, a mask layer formed on the first conductive semiconductor layer and having a plurality of holes, a plurality of vertical light-emitting structures vertically grown on the first conductive semiconductor layer through the plurality of holes, a current diffusion layer surrounding the plurality of vertical light-emitting structures on the first conductive semiconductor layer, and a dielectric reflector filling a space between the plurality of vertical light-emitting structures on the current diffusion layer.
    Type: Application
    Filed: April 30, 2013
    Publication date: December 26, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-hoon LEE, Geon-wook YOO, Nam-goo CHA, Kyung-wook HWANG
  • Publication number: 20130341666
    Abstract: A semiconductor light emitting device includes: a package which is made of a resin and includes a recess; a lead frame exposed to a bottom of the recess; a semiconductor light emitting element connected to the lead frame in the recess; a phosphor layer over the bottom of the recess; and a second resin layer above the phosphor layer and the semiconductor light emitting element, in which the phosphor layer contains a semiconductor fine particle having an excitation fluorescence spectrum which changes according to a particle size, and the phosphor layer includes a water-soluble or water-dispersible material.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Shinji YOSHIDA, Kazuhiko YAMANAKA
  • Publication number: 20130335989
    Abstract: A headlamp (1) includes a semiconductor laser (3); a light-emitting element (7) that emits light in response to laser light emitted from the semiconductor laser (3); a heat-conducting member (13) that receives heat generated by the light-emitting element (7) through a light-emitting-element facing surface (13a); and a gap layer (15) that is disposed between the light-emitting element (7) and the light-emitting-element facing surface (13a) and that conducts the heat generated by the light-emitting element (7) to the light-emitting-element facing surface (13a). The gap layer (15) contains at least an inorganic amorphous material.
    Type: Application
    Filed: March 8, 2012
    Publication date: December 19, 2013
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Rina Sato, Katsuhiko Kishimoto
  • Publication number: 20130314642
    Abstract: A non-black dead front display assembly is provided which includes a first plastic layer which in the absence of backlighting is opaque to a viewer, a transparent structural plastic layer, a mask layer with light transparent windows defining at least one graphic, and a support component for supporting a light source for backlighting.
    Type: Application
    Filed: March 27, 2013
    Publication date: November 28, 2013
    Applicant: Conopco, Inc., d/b/a UNILEVER
    Inventors: Kenneth Dykes TIMMERMAN, Gregory Kent THOMPSON
  • Publication number: 20130313595
    Abstract: Compositions having luminescent properties are described. The compositions can include a luminescent material, such as quantum dots and a reflective material, such as barium sulfate, both suspended in a matrix material. The presence of the reflecting material increases the amount of light captured from the composition. The compositions described herein can be used in back-lighting for LCDs and can also be used in other applications, such as color conditioning of ambient lighting.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Inventors: Imad Naasani, Hao Pang
  • Publication number: 20130299745
    Abstract: A method for the photo-mediated phase transfer of inorganic nanocrystals, such as luminescent quantum dots, QDs, is provided. Irradiation, specifically UV excitation (?ex<400 nm), promotes the in-situ ligand exchange of hydrophobic quantum dots with hydrophilic ligands and their facile transfer to polar solvents and buffer media. The technique enables transfer of quantum dots and other nanocrystal materials from hydrophobic to polar and hydrophilic solutions.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 14, 2013
    Applicant: The Florida State University Research Foundation Inc.
    Inventors: Hedi Mattoussi, Igor Alabugin, Goutam Palui, Tommaso Avellini
  • Publication number: 20130295586
    Abstract: Semiconductor nanocrystals prepared using a mixture of organic ligands (e.g., oxoacids), as well as compositions, kits, and methods of using such semiconductor nanocrystals are disclosed.
    Type: Application
    Filed: December 23, 2011
    Publication date: November 7, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Joseph August Bartel, Yongfen Chen, Noah Lermer, Timothy Carter, Scott Sweeney, Chad Teters, Wenxi Huang
  • Publication number: 20130294048
    Abstract: Provided are a long-life light emitting device less likely to degrade luminescence properties over time, a method for manufacturing the same, and a cell for a light emitting device used for the same. A light emitting device 1 includes a cell 10 and a luminescent material encapsulated in the cell 10. The cell 10 includes a pair of glass sheets 12 and 13 and a glass-made fused part 14a. The pair of glass sheets 12 and 13 are disposed to face each other with a space therebetween. The fused part 14a is disposed between respective peripheral portions of the pair of glass sheets 12 and 13. The fused part 14a is fused to each of the pair of glass sheets 12 and 13.
    Type: Application
    Filed: October 18, 2011
    Publication date: November 7, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Hideki Asano, Masanori Wada
  • Publication number: 20130284979
    Abstract: The invention relates to a method for the synthesis of glutathione-capped cadmium-telluride (GSH-CdTe) quantum dots in an aqueous medium, including the steps of: a) preparing a precursor solution of cadmium in a citrate buffer; b) adding glutathione (GSH) to the preceding mixture via strong agitation; c) adding a telluride (potassium or sodium telluride) oxyanion as a telluride donor to the preceding mixture; d) allowing the preceding mixture to react; and e) stopping the reaction by incubation at low temperature.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Inventors: Jose Manuel PEREZ DONOSO, Juan Pablo MONRAS CHARLES, Igor Orlando OSORIO-ROMAN, Claudio Chrisitan VASQUEZ GUZMAN
  • Publication number: 20130287703
    Abstract: The present invention relates to a nanophosphor and a synthesis method thereof, and provides a nanophosphor comprising a first compound of Formula 1, wherein the first compound is fluoride-based one which is co-doped with Ce3+ and Tb3+. NaGd1?p?q?rMrF4:Ce3+p,Tb3+q ??(1) In the Formula 1, descriptions on the p, q, r and M are overlapped with what was described in the detailed description of the present invention, so their concrete description are omitted. The nanophosphor has good light emission intensity and magnetic property as well as up-conversion and/or down-conversion property able to emit visible light after excitation by infrared and/or ultraviolet rays, so can be applied to a contrast agent and a counterfeit prevention code.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Applicant: Korea Institute Of Science And Technology
    Inventors: Ho Seong JANG, Kyoungja WOO, Kipil LIM
  • Patent number: 8558256
    Abstract: Provided are a light emitting diode (LED) using a Si nanowire as an emission device and a method of fabricating the same. The LED includes: a semiconductor substrate; first and second semiconductor protrusions disposed on the semiconductor substrate to face each other; a semiconductor nanowire suspended between the first and second semiconductor protrusions; and first and second electrodes disposed on the first and second protrusions, respectively.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-ha Hong, Young-gu Jin, Jai-kwang Shin, Sung-Il Park, Jong-seob Kim
  • Publication number: 20130267054
    Abstract: A semiconductor light emitting device includes a lower cladding layer, an active layer, and an AlGaAs upper cladding layer mounted on a GaAs substrate. The semiconductor light emitting device has a ridge structure including the AlGaAs upper cladding layer. The semiconductor light emitting device further includes an InGaAs etching stop layer provided in contact with the lower side of the AlGaAs upper cladding layer. The InGaAs etching stop layer has a band gap greater than that of the active layer.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Nobuaki Hatori, Tsuyoshi Yamamoto, Hisao Sudo, Yasuhiko Arakawa
  • Publication number: 20130265802
    Abstract: A light-emitting device includes a transparent light guide plate and a light source that irradiates light onto the light guide plate, in which a plurality of dot-shaped light-emitting concave portions having light output surfaces that output incident light derived from the light source from light-emitting surfaces are formed on the light guide plate, and a diffraction grating, which is an assembly of grooves paralleled at a constant pitch, is formed on each of the light output surfaces of the dot-shaped light-emitting concave portions.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Mitsuru KAMIKATANO, Hideki SASAKI, Ren SUZUKI