Of Radiant Energy Patents (Class 977/954)
  • Publication number: 20130187051
    Abstract: A photon detection system with improved high-speed performance. An array of photon detectors is provided, providing transient responses that indicate both a time and a location of photon detection. Each photon detector may use a superconducting nanowire, arranged as part of a resonant cell to have a unique resonant frequency. Upon detection of even a single photon, a resonant cell may create a transient response comprising its unique resonant frequency. The transient responses may be combined on a single readout line, allowing identification of the photon detection location based on a detected frequency component read out. The electrical properties within resonant cells, as well as the connections between different resonant cells, may be configured to produce different transient responses. For example, resonant cells may be configured to produce a transient response having multiple pulses, which may separately indicate a time and a location of a photon detection.
    Type: Application
    Filed: October 2, 2012
    Publication date: July 25, 2013
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Patent number: 8492682
    Abstract: A micro heater includes a first electrode, a second electrode, a first carbon nanotube, and a second carbon nanotube. The first carbon nanotube extends from the first electrode. The second carbon nanotube branches from the second electrode. The first carbon nanotube and the second carbon nanotube intersect with each other to define a node therebetween.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: July 23, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xue-Shen Wang, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20130174900
    Abstract: A thin-film photovoltaic devices includes transparent conductive oxide which has embedded within it nanowires at less than 2% nominal shadowing area. The nanowires enhance the electrical conductivity of the conductive oxide.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 11, 2013
    Applicant: Stion Corporation
    Inventors: Chester A. Farris, III, Robert D. Wieting, Ashish Tandon
  • Publication number: 20130172195
    Abstract: Optical detectors and associated systems and methods are generally described. In certain embodiments, the optical detectors comprise nanowire-based single-photon detectors, including those with advantageous geometric configurations.
    Type: Application
    Filed: October 2, 2012
    Publication date: July 4, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Francesco Bellei, Karl K. Berggren, Eric Dauler, Xiaolong Hu, Francesco Marsili, Faraz Najafi
  • Publication number: 20130154040
    Abstract: Photo detectors are provided. The photo detector includes a photoelectric conversion layer between a lower carrier transportation layer and an upper carrier transportation layer, and a common electrode on the upper carrier transportation layer opposite to the photoelectric conversion layer. The photoelectric conversion layer includes a plurality of light absorption layers and each of the light absorption layers contains silicon nanocrystals. The silicon nanocrystals in respective ones of the light absorption layers have different sizes from each other.
    Type: Application
    Filed: September 12, 2012
    Publication date: June 20, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chul Huh, Sang Hyeob Kim, Byoung-Jun Park, Eun Hye Jang
  • Publication number: 20130150245
    Abstract: A superconducting nanowire photon detector apparatus comprising detection, insulating, and substrate layers. The insulating layer provides electrical isolation of a plurality of individual detector elements from the interconnection network fabricated on the substrate layer except where electrical interconnection between the inputs and outputs of each detector element and the interconnection network is intended.
    Type: Application
    Filed: April 17, 2012
    Publication date: June 13, 2013
    Inventor: Amos Matthew Smith
  • Publication number: 20130146778
    Abstract: A system for detecting electromagnetic radiation or an ion flow, including an input device for receiving the electronic radiation or the ion flow and emitting primary electrons in response, a multiplier of electrons in transmission, for receiving the primary electrons and emitting secondary electrons in response, and an output device for receiving the secondary electrons and emitting an output signal in response. The electron multiplier includes at least one nanocrystalline diamond layer doped with boron in a concentration of higher than 5·1019 cm?3.
    Type: Application
    Filed: June 17, 2011
    Publication date: June 13, 2013
    Applicant: PHOTONIS FRANCE
    Inventors: Gert Nuetzel, Pascal Lavoute, Richard B. Jackman
  • Patent number: 8440958
    Abstract: An underwater data transmission system including arrays of nano-meter scaled photon emitters and sensors on an outer surface of an underwater platform. For the emitters, a laser is pulsed to correlate with data packets, providing a beam of photons at a prescribed frequency. Nano-scaled collecting lenses channel the incoming photons to photo-receptors located at a focal plane for the frequency at the base of each lens. A coating on the lenses absorbs photons at the frequency that are not aligned with the longitudinal axes of the lenses or tubes. Nano-wires connect the photo-receptors to a light intensity integrator. The integrator integrates the intensity over a surface area. The output of the integrator is fed to a signal processor to track and process the arriving digital packets.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 14, 2013
    Inventor: Promode R. Bandyopadhyay
  • Publication number: 20130112254
    Abstract: A photovoltaic cell of high efficiency may be obtained using metallic nanoparticles or nanostructures as the main light absorbing element in the photosensitive layer of the cell, which absorb the light through a surface plasmon or polaron mechanism. The cell comprises at least one photosensitive layer containing nanoparticles or nanostructures each between a n-doped and a p-doped charge transport layer, characterized in that the nanoparticles or nanostructures are the main light absorbing element in the photosensitive layer, the nanoparticles or nanostructures have metallic conductivity and absorb near infrared, visible and/or ultraviolet light through a surface plasmon or polaron mechanism, and the nanoparticles or nanostructures have at least one of their dimensions of size between 0.1 and 500 nm.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 9, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Publication number: 20130106431
    Abstract: An ionization vacuum gauge includes a cathode, an anode and an ion collector. The ion collector component is located at one side of the anode component and spaced from the anode component. The cathode component is located at another side of the anode component and includes an electron emitter, which extends toward the anode component from the cathode component. The electron emitter includes at least one carbon nanotube wire.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 2, 2013
    Inventors: PENG LIU, DUAN-LIANG ZHOU, CHUN-HAI ZHANG, JING QI, PI-JIN CHEN, SHOU-SHAN FAN
  • Publication number: 20130107344
    Abstract: A microcavity-controlled two-dimensional carbon lattice structure device selectively modifies to reflect or to transmit, or emits, or absorbs, electromagnetic radiation depending on the wavelength of the electromagnetic radiation. The microcavity-controlled two-dimensional carbon lattice structure device employs a graphene layer or at least one carbon nanotube located within an optical center of a microcavity defined by a pair of partial mirrors that partially reflect electromagnetic radiation. The spacing between the mirror determines the efficiency of elastic and inelastic scattering of electromagnetic radiation inside the microcavity, and hence, determines a resonance wavelength of electronic radiation that is coupled to the microcavity. The resonance wavelength is tunable by selecting the dimensional and material parameters of the microcavity. The process for manufacturing this device is compatible with standard complementary metal oxide semiconductor (CMOS) manufacturing processes.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicants: International Business Machines Corporation, Karlsruher Institut fuer Technologie
    Inventors: Phaedon Avouris, Mathias B. Steiner, Michael Engel, Ralph Krupke, Andrea C. Ferrari, Antonio Lombardo
  • Patent number: 8426722
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In a particular implementation, a photovoltaic cell includes a granular semiconductor and oxide layer with nanometer-size absorber semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer is disposed between electron and hole conducting layers. In some implementations, multiple semiconductor and oxide layers can be deposited.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: April 23, 2013
    Assignee: Zetta Research and Development LLC—AQT Series
    Inventors: Mariana R. Munteanu, Erol Girt
  • Publication number: 20130094021
    Abstract: The present invention provides a method of fabricating gold nanoparticles using electroless displacement plating, the method including the steps of: depositing on a substrate a metal having a reduction potential lower than that of gold to form a metal layer; and reacting a gold ion-containing plating solution with the metal layer. The invention also provides gold nanoparticles fabricated by the method. According to the method, gold nanostructures can be fabricated in a simple, cost-effective and efficient manner, and the fabricated gold nanoparticles can be used to measure surface-enhanced Raman scattering (SERS) signal or fluorescence. In addition, the invention enables the development of an optical sensor including the gold nanostructures.
    Type: Application
    Filed: September 10, 2012
    Publication date: April 18, 2013
    Applicant: Korea Institute of Science and Technology
    Inventors: Sang Kyung KIM, Sang Hwi Park
  • Patent number: 8415759
    Abstract: In certain embodiments, an apparatus for down-converting and detecting photons includes a detector layer and a nanocrystal layer. The nanocrystal layer includes nanocrystals operable to absorb first photons of a higher energy and emit second photons of a lower energy in response to the absorption. The detector layer is configured to detect the second photons. In certain embodiments, a method for manufacturing an apparatus for down-converting and detecting photons includes preparing an outer surface of a substrate. Nanocrystals are disposed outwardly from the outer surface. The nanocrystals are operable to absorb first photons of a higher energy and emit second photons of a lower energy in response to the absorption.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 9, 2013
    Assignee: Raytheon Company
    Inventors: Frank B. Jaworski, Moungi Bawendi, Scott M. Geyer
  • Publication number: 20130075600
    Abstract: Disclosed is an apparatus for detecting a neutron. The apparatus includes: a neutron interaction material configured to emit a charged particle upon absorbing a neutron; a plurality of nanoparticles distributed in the neutron interaction material, each nanoparticle in the plurality being configured to scintillate upon interacting with the charged particle to emit a pulse of light; a photodetector coupled to the neutron interaction material and configured to receive the pulse of light and generate a signal based on the received pulse of light; and a processor configured to receive the signal in order to detect the neutron.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Anton Nikitin, Mikhail Korjik
  • Publication number: 20130062522
    Abstract: 3D sensors, systems, and associated methods are provided. In one aspect, for example, a monolithic 3D sensor for detecting infrared and visible light can include a semiconductor substrate having a device surface, at least one visible light photodiode formed at the device surface and at least one 3D photodiode formed at the device surface in proximity to the at least one visible light photodiode. The device can further include a quantum efficiency enhanced infrared light region functionally coupled to the at least one 3D photodiode and positioned to interact with electromagnetic radiation. In one aspect, the quantum efficiency enhanced infrared light region is a textured region located at the device surface.
    Type: Application
    Filed: March 12, 2012
    Publication date: March 14, 2013
    Applicant: SiOnyx, Inc.
    Inventors: Jutao Jiang, Jeffrey McKee, Homayoon Haddad, Chris Sungkwon Hong
  • Publication number: 20130050506
    Abstract: The carbon nanotube (CNT) imaging system combines many sensor nanotubes into a containment vessel that is utilized as a pixel in a multipixel array that is assembled in a similar row and column configuration as other type of 2D sensors. The individual CNT sensor elements inside this pixel containment vessel may have many different carbon nanotubes with many different spectral frequencies. This will permit much faster acquisition of specific spectral data and the assemblage of spectral data cubes much faster than camera utilizing conventional optomechanical spectrographs or similar acoustic LCD filter gates for the same. The system could also contain emitter carbon nanotubes to emit coherent light back out through the optical lens system to act to provide range information or function as a spectral illuminator for the system.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Inventors: Mark Allen Lanoue, Janek Kaliczak
  • Publication number: 20130048830
    Abstract: A photomultiplier tube includes a photocathode, a first electrode, and a second electrode opposedly disposed to the first electrode and separated from it to create a space therebetween. An anode opposedly disposed to the photocathode. The first electrode and the second electrode are disposed between the anode and the photocathode. The photocathode is adjacent to the first electrode and separated from it, and the anode is adjacent to the second electrode and separated from it. An amplifying medium is disposed in the space between the first electrode and the second electrode. The amplifying medium includes metal oxide nanoparticles and/or an aerogel. The metal oxide nanoparticles have an aspect ratio greater than or equal to about 5.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 28, 2013
    Applicant: The Johns Hopkins University
    Inventor: Stergios J. Papadakis
  • Publication number: 20130049018
    Abstract: An optical/electrical transducer device has housing, formed of a thermally conductive section and an optically transmissive member. The section and member are connected together to form a seal for a vapor tight chamber. Pressure within the chamber configures a working fluid to absorb heat during operation of the device, to vaporize at a relatively hot location as it absorbs heat, to transfer heat to and condense at a relatively cold location, and to return as a liquid to the relatively hot location. The transducer device also includes a wicking structure mounted within the chamber to facilitate flow of condensed liquid of the working fluid from the cold location to the hot location. At least a portion of the wicking structure comprises semiconductor nanowires, configured as part of an optical/electrical transducer within the chamber for emitting light through and/or driven by light received via the transmissive member.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: David P. RAMER, Jack C. Rains, JR.
  • Publication number: 20130038869
    Abstract: A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Applicant: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventors: Robert J. Lascola, Christopher S. McWhorter, Simona H. Murph
  • Patent number: 8373060
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In particular implementations, the novel photovoltaic structures can be fabricated using low cost and scalable processes, such as magnetron sputtering. In a particular implementation, a photovoltaic cell includes a photoactive conversion layer comprising one or more granular semiconductor and oxide layers with nanometer-size semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer can be a disposed between electrode layers. In some implementations, multiple semiconductor and oxide layers can be deposited. These so-called semiconductor and oxide layers absorb sun light and convert solar irradiance into electrical free energy.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 12, 2013
    Assignee: Zetta Research and Development LLC—AQT Series
    Inventors: Mariana R. Munteanu, Erol Girt
  • Publication number: 20130022169
    Abstract: Provided is a radiation detecting device, including: a scintillator which emits light when radiation is irradiated thereto; and a photosensor array having light receiving elements for receiving the emitted light which are two-dimensionally arranged, in which: the scintillator has a phase separation structure for propagating the light emitted inside the scintillator in a light propagating direction, the phase separation structure being formed by embedding multiple columnar portions formed of a first material in a second material; the radiation is irradiated to the scintillator from a direction which is not in parallel to the light propagating direction; and the light emitted inside the scintillator is propagated through the scintillator in the light propagating direction and is received by the photosensor array which is placed so as to face an end face of the scintillator.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 24, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Iwasaki, Nobuhiro Yasui, Toru Den
  • Publication number: 20130015358
    Abstract: A variety of methods and systems are described that relate to reducing optical noise. In at least one embodiment, the method includes, emitting a first light having a selected wavelength from a light source, receiving a reflected first light onto a phosphor-based layer positioned inside a receiver, the reflected first light being at least some of the emitted first light that has been reflected by an object positioned outside of a desired target location. The method further includes, shifting the wavelength of the received reflected first light due to an interaction between the received reflected first light and the phosphor-based layer, and passing the received reflected first light with respect to which the wavelength has been shifted through a light detector without detection.
    Type: Application
    Filed: June 11, 2011
    Publication date: January 17, 2013
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventor: Francis Lawrence Leard
  • Publication number: 20130013211
    Abstract: The present disclosure relates to an apparatus and method for estimating a parameter of interest of a downhole fluid using a fluid analysis module. The fluid analysis module may include: at least one nano element and a processor configured to estimate an impedance of the at least one nano element. The fluid analysis module may include an AC power supply configured to supply electrical signals at a plurality of frequencies through the at least one nano element. The method may include bringing the downhole fluid into contact with the at least one nano element; supplying electrical signals through the at least one nano element at a plurality of frequencies; generating impedance information for the at least one nano element in response to the electrical signals; and estimating the at least one parameter of interest using the impedance information.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 10, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Sunil Kumar
  • Publication number: 20130001407
    Abstract: An apparatus, system, and method are disclosed for nonlinear optical surface sensing with a single thermo-electric detector. In particular, the system includes at least two signal sources that are co-aligned to propagate photons to the same location on a surface. The system also includes at least one focusing element that focuses a sequence of photons that is reflected from the location on the surface. In addition, the system includes at least one frequency selective electromagnetic detector that detects the sequence of photons that are focused from the focusing element(s). When the frequency selective electromagnetic detector senses a photon, the frequency selective electromagnetic detector emits an electrical pulse that has a voltage that is proportional to the energy level of the photon. Additionally, the system includes a processor that processes the electrical pulses, and de-multiplexes the sequence of emitted electrical pulses based on the electrical pulse voltage of the electrical pulses.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Jeffrey H. Hunt, John H. Belk
  • Publication number: 20130002394
    Abstract: A polymer film 102 is formed on a substrate 101, a thermistor resistor 106 is formed on the polymer film 102, and a light reflecting film 104 is formed between the thermistor resistor 106 and the substrate 101. For this reason, if infrared rays or terahertz waves are incident from above, a part is absorbed by the thermistor resistor 106, and most transmits the polymer film 102 and is reflected by the light reflecting film 104. When the distance between the thermistor resistor 106 and the light reflecting film 104 is d, a light component having a wavelength expressed by d=l/4 and equal to or smaller than l resonates and changes to heat, and the temperature of the thermistor resistor 106 rises. A change in resistance with a rise in the temperature of the thermistor resistor 106 is detected, thereby detecting the intensity of an infrared ray or a terahertz wave.
    Type: Application
    Filed: May 11, 2011
    Publication date: January 3, 2013
    Inventor: Kaoru Narita
  • Publication number: 20120322164
    Abstract: Nanowire array structures based on periodic or aperiodic nanowires are provided in various configurations for sensing and interacting with light and substances to provide various functions such as sensors for detecting DNAs and others and solar cells for converting light into electricity.
    Type: Application
    Filed: April 16, 2012
    Publication date: December 20, 2012
    Inventors: Amit Lal, Yuerui Lu
  • Publication number: 20120318966
    Abstract: A sensor apparatus for measuring characteristics of optical radiation has a substrate and a low profile spectrally selective detection system located within the substrate at one or more spatially separated locations. The spectrally selective detection system includes a generally laminar array of wavelength selectors optically coupled to a corresponding array of optical detectors. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 20, 2012
    Applicant: KLA-Tencor Corporation
    Inventors: Earl Jensen, Mei Sun, Kevin O'Brien
  • Publication number: 20120298843
    Abstract: An embodiment relates to a device comprising a substrate having a front side and a back-side that is exposed to incoming radiation, a nanowire disposed on the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.
    Type: Application
    Filed: June 12, 2012
    Publication date: November 29, 2012
    Applicant: ZENA TECHNOLOGIES, INC.
    Inventors: Young-June YU, Munib WOBER
  • Publication number: 20120286296
    Abstract: Embodiments of the invention pertain to a method and apparatus for sensing infrared (IR) radiation. In a specific embodiment, a night vision device can be fabricated by depositing a few layers of organic thin films. Embodiments of the subject device can operate at voltages in the range of 10-15 Volts and have lower manufacturing costs compared to conventional night vision devices. Embodiments of the device can incorporate an organic phototransistor in series with an organic light emitting device. In a specific embodiment, all electrodes are transparent to infrared light. An IR sensing layer can be incorporated with an OLED to provide IR-to-visible color up-conversion. Improved dark current characteristics can be achieved by incorporating a poor hole transport layer material as part of the IR sensing layer.
    Type: Application
    Filed: November 24, 2010
    Publication date: November 15, 2012
    Applicants: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC., UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: Franky So, Do Young Kim
  • Publication number: 20120286161
    Abstract: An infrared sensor formed from a resonant sensor element having a mechanical resonator and an IR absorber arranged to receive and absorb incident infrared radiation. The resonator includes a temperature-responsive material that exhibits pyroelectric and piezoelectric effects. The IR absorber is thermally coupled to the resonator such that the resonator receives thermal energy from at least some of the incident infrared radiation absorbed by the IR absorber. The resonator has at least one resonant characteristic that varies based on the amount of thermal energy received from the IR absorber by the resonator. A sensor array and infrared sensing method are included that use a plurality of the infrared sensors along with a reference sensor having the same construction as the other sensor elements, except that the sensor either lacks the IR absorber or has it arranged so that it is not exposed to the incident infrared radiation.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 15, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mina Raieszadeh, Vikrant Jayant Gokhale
  • Publication number: 20120286389
    Abstract: Photovoltaic devices conformally deposited on a nano-structured substrate having hills and valleys have corresponding hills and valleys in the device layers. We have found that disposing an insulator in the valleys of the device layers such that the top electrode of the device is insulated from the device layer valleys provides beneficial results. In particular, this insulator prevents electrical shorts that otherwise tend to occur in such devices.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Inventors: Anjia Gu, Yijie Huo, Dong Liang, Yangsen Kang, James S. Harris, JR.
  • Publication number: 20120280226
    Abstract: Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 8, 2012
    Inventors: Igor Constantin Ivanov, Edward Hartley Sargent, Hui Tian
  • Publication number: 20120281209
    Abstract: Methods and systems for enhanced SERS sensing are disclosed, including generating electromagnetic radiation from a fiber laser; coupling the radiation to a SERS sensor comprising: a fiber comprising a first end and a second end, wherein the first end is coupled to the fiber laser and the second end is deposited with one or more metal nanoparticles; an in-line fiber grating integrated into the fiber between the first and the second end; a spectrometer configured to measure a spectrum produced by the in-line fiber grating; and a micro-processor configured to control the fiber laser and the spectrometer; exciting one or more molecules adsorbed on the surface of the one or more metal nanoparticles to generate a Raman signal; coupling the signal into the fiber; separating the signal into its wavelength components with the in-line fiber grating; and measuring the wavelength components with the spectrometer. Other embodiments are described and claimed.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: NANOSIRIUS, INC.
    Inventor: Shuang Bai
  • Publication number: 20120274771
    Abstract: An image pickup device, a visibility support apparatus, a night vision device, a navigation support apparatus, and a monitoring device are provided in which noise and dark current are suppressed to thereby provide clear images regardless of whether it is day or night. The device includes a light-receiving layer 3 having a multi-quantum well structure and a diffusion concentration distribution control layer 4 disposed on the light-receiving layer so as to be opposite an InP substrate 1, wherein the light-receiving layer has a band gap wavelength of 1.65 to 3 ?m, the diffusion concentration distribution control layer has a lower band gap energy than InP, a pn junction is formed for each light-receiving element by selective diffusion of an impurity element, and the impurity selectively diffused in the light-receiving layer has a concentration of 5×1016/cm3 or less.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 1, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Youichi Nagai, Yasuhiro Iguchi
  • Patent number: 8299472
    Abstract: An imaging device formed as an active pixel array combining a CMOS fabrication process and a nanowire fabrication process. The pixels in the array may include a single or multiple photogates surrounding the nanowire. The photogates control the potential profile in the nanowire, allowing accumulation of photo-generated charges in the nanowire and transfer of the charges for signal readout. Each pixel may also include a readout circuit which may include a reset transistor, a charge transfer switch transistor, source follower amplifier, and pixel select transistor. A nanowire is generally structured as a vertical rod on the bulk semiconductor substrate to receive the light energy impinging onto the tip of the nanowire. The nanowire may be configured to function as either a photodetector or a waveguide configured to guild the light beam to the bulk substrate. In the embodiments herein, with the presence of the nanowire photogate and a substrate photogate, light of different wavelengths can be detected.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 30, 2012
    Inventors: Young-June Yu, Munib Wober
  • Publication number: 20120267532
    Abstract: An IR source in the form of a micro-hotplate device including a CMOS metal layer made of at least one layer of embedded on a dielectric membrane supported by a silicon substrate. The device is formed in a CMOS process followed by a back etching step. The IR source also can be in the form of an array of small membranes—closely packed as a result of the use of the deep reactive ion etching technique and having better mechanical stability due to the small size of each membrane while maintaining the same total IR emission level. SOI technology can be used to allow high ambient temperature and allow the integration of a temperature sensor, preferably in the form of a diode or a bipolar transistor right below the IR source.
    Type: Application
    Filed: May 8, 2012
    Publication date: October 25, 2012
    Applicant: CAMBRIDGE CMOS SENSORS LIMITED
    Inventors: Florin UDREA, Julian GARDNER, Syed Zeeshan ALI, Mohamed Foysol CHOWDHURY, Ilie POENARU
  • Publication number: 20120241632
    Abstract: Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., 10B) allow the use of neutron detectors that do not use 3He.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Applicant: SAVANNAH RIVER NUCLEAR SOLUSTIONS, LLC
    Inventors: Joseph V. Cordaro, Steven M. Serkiz, Christopher S. McWhorter, Lindsay T. Sexton, Scott T. Retterer
  • Publication number: 20120235028
    Abstract: Apparatuses capable of and techniques for detecting the visible light spectrum are provided.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Applicant: UNIVERSITY OF SEOUL INDUSTRY COOPERATION FOUNDATION
    Inventor: Doyeol AHN
  • Patent number: 8269302
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 18, 2012
    Assignee: InVisage Technologies, Inc.
    Inventors: Hui Tian, Edward Sargent
  • Patent number: 8269260
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 18, 2012
    Assignee: InVisage Technologies, Inc.
    Inventors: Hui Tian, Edward Sargent
  • Publication number: 20120217477
    Abstract: Embodiments of the invention are directed to an IR photodetector that broadly absorbs electromagnetic radiation including at least a portion of the near infrared (NIR) spectrum. The IR photodetector comprises polydispersed QDs of PbS and/or PbSe. The IR photodetector can be included as a layer in an up-conversion device when coupled to a light emitting diode (LED) according to an embodiment of the invention.
    Type: Application
    Filed: October 13, 2011
    Publication date: August 30, 2012
    Applicants: NANOHOLDINGS, LLC, UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: FRANKY SO, Do Young Kim, Bhabendra Pradhan, Jae Woong Lee
  • Publication number: 20120218445
    Abstract: The invention provides an imager readout architecture utilizing analog-to-digital converters (ADC), the architecture comprising a band-limited sigma delta modulator (SDM) ADC; and a serpentine readout, which can be configured to allow the band-limited SDM to multiplex between multiple columns by avoiding discontinuities at the edges of a row. SDM ADC image reconstruction artifacts are minimized using a modified serpentine read out methodology, the methodology comprising using primary and redundant slices with the serpentine read out in opposite directions and averaging the slices. Advantageously, the invention can be used to develop a read out integrated circuit (ROIC) for strained layer superlattice imagers (SLS) using sigma delta modulator (SDM) based analog to digital converters (SDM ADC).
    Type: Application
    Filed: February 27, 2012
    Publication date: August 30, 2012
    Applicant: Intrinsix Corporation
    Inventor: Eugene M. Petilli
  • Publication number: 20120212732
    Abstract: An apparatus for performing surface enhanced Raman spectroscopy includes an optical waveguide, a plurality of flexible nano-structures, wherein the plurality of nano-structures have respective free ends positioned within an evanescent field to be generated by light propagated through the optical waveguide, wherein the plurality of nano-structures are movable from a first position and a second position, wherein in the first position, the free ends of the plurality of nano-structures are substantially spaced from each other and in the second position, the free ends of a plurality of the nano-structures are substantially in contact with each other.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Inventors: Charles M. Santori, Kai-Mei Camilla Fu, Marco Fiorentino, Raymond G. Beausoleil
  • Publication number: 20120205518
    Abstract: In accordance with an example embodiment of the present invention, an apparatus is provided, including a photodetecting structure with one or more photon sensing layers of graphene; and an integrated graphene field effect transistor configured to function as a pre-amplifier for the photodetecting structure, where the graphene field effect transistor is vertically integrated to the photodetecting structure.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 16, 2012
    Applicant: NOKIA CORPORATION
    Inventors: Martti VOUTILAINEN, Markku ROUVALA, Pirjo PASANEN
  • Publication number: 20120199747
    Abstract: In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Applicant: Lawrence Livermore National Security, LLC.
    Inventors: Sonia Edith Létant, Tzu-Fang Wang
  • Publication number: 20120204297
    Abstract: Optical information and topographic information of the surface of a sample are measured at a nanometer-order resolution and with high reproducibility without damaging a probe and the sample by combining a nanometer-order cylindrical structure with a nanometer-order microstructure to form a plasmon intensifying near-field probe having a nanometer-order optical resolution and by repeating approach/retreat of the probe to/from each measurement point on the sample at a low contact force.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 9, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Toshihiko NAKATA, Masahiro Watanabe, Takashi Inoue, Kishio Hidaka, Makoto Okai, Toshiaki Morita, Motoyuki Hirooka
  • Publication number: 20120193521
    Abstract: An apparatus, system, and method are disclosed for a frequency selective electromagnetic detector. In particular, the frequency selective electromagnetic detector includes a nanowire array constructed from a plurality of nanowires of different compositions. At least one nanoparticle-sized diameter thermoelectric junction is formed between the nanowires of different compositions. When a nanoparticle-sized diameter thermoelectric junction senses a photon, the nanoparticle-sized diameter thermoelectric junction emits an electrical pulse voltage that is proportional to an energy level of the sensed photon. In one or more embodiments, the frequency selective electromagnetic detector is a frequency selective optical detector that is used to sense photons having optical frequencies. In at least one embodiment, at least one of the nanowires in the nanowire array is manufactured from a compound material including Bismuth (Bi) and Tellurium (Te).
    Type: Application
    Filed: February 2, 2011
    Publication date: August 2, 2012
    Applicant: THE BOEING COMPANY
    Inventor: Jeffrey H. Hunt
  • Patent number: 8232517
    Abstract: A wavelength-sensitive detector is provided that is based on elongate nanostructures, e.g. nanowires. The elongate nanostructures are parallel with respect to a common substrate and they are grouped in at least first and second units of a plurality of parallel elongate nanostructures. The elongate nanostructures are positioned in between a first and second electrode, the first and second electrodes lying respectively in a first and second plane substantially perpendicular to the plane of substrate, whereby all elongate nanostructures in a same photoconductor unit are contacted by the same two electrodes. Circuitry is added to read out electrical signals from the photoconductor units. The electronic density of states of the elongate nanostructures in each unit is different, because the material, of which the elongate nanostructures are made, is different or because the diameter of the elongate nanostructures is different.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 31, 2012
    Assignee: IMEC
    Inventors: Anne S. Verhulst, Wilfried Vandervorst
  • Publication number: 20120188539
    Abstract: A nanorod surface enhanced Raman spectroscopy (SERS) apparatus, system and method of SERS using nanorods that are activated with a key. The nanorod SERS apparatus includes a plurality of nanorods, an activator to move the nanorods from an inactive to an active configuration and the key to trigger the activator. The nanorod SERS system further includes a Raman signal detector and an illumination source. The method of SERS using nanorods includes activating a plurality of nanorods with the key, illuminating the activated plurality of nanorods, and detecting a Raman scattering signal when the nanorods are in the active configuration.
    Type: Application
    Filed: January 26, 2011
    Publication date: July 26, 2012
    Inventors: Michael J. Stuke, Shih-Yuan (SY) Wang, Zhiyong Li, Min Hu, Fung Suong Ou, Huei Pei Kuo