Including Work Heating Or Contact With Combustion Products Patents (Class 134/19)
  • Publication number: 20070215181
    Abstract: Disclosed herein is a method of cleaning a photomask, which prevents haze from being generated on a surface of the photomask during a photolithography process. The photomask is heat treated to remove residual ions on a surface thereof and to induce curing and oxidation of Cr and MoSiON layers, thereby preventing diffusion of the ions. Etching of Cr and MoSiON layers due to a cleaning process is suppressed in order to significantly reduce a change in phase and transmissivity of optical properties of Cr and MoSiON.
    Type: Application
    Filed: January 18, 2007
    Publication date: September 20, 2007
    Applicant: PKL CO., LTD.
    Inventors: Yong Dae KIM, Jong Min KIM, Han Byul KANG, Hyun Joon CHO, Sang Soo CHOI
  • Publication number: 20070209682
    Abstract: A method and an equipment for cleaning masks used for photolithography steps, including at least one step of thermal treatment under pumping at a pressure lower than the atmospheric pressure and at a temperature greater than the ambient temperature.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 13, 2007
    Applicant: STMicroelectronics S.A.
    Inventor: Christophe Martin
  • Patent number: 7264679
    Abstract: In a method of cleaning a surface of a substrate processing chamber component to remove process deposits, the component surface is cooled to a temperature below about ?40° C. to fracture the process deposits on the surface. The surface can be cooled by immersing the surface in a low temperature fluid, such as liquid nitrogen. In another version, the component surface is heated to fracture and delaminate the deposits, and optionally, subsequently rapidly cooled to form more fractures. The component surface cleaning can also be performed by bead blasting followed by a chemical cleaning step.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: September 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Marc O'Donnell Schweitzer, Jennifer Watia Tiller, Brian West, Karl Brueckner
  • Patent number: 7258748
    Abstract: In a method for processing a baking pan, the baking pan is placed in a solution including: water, N-Methyl-2-Pyrrolidone, Ethoxylate of nonylphenol, Monoethanolamine, Triethanolamine and Potassium hydroxide. The solution is heated to a temperature in a predefined temperature range. The baking pan is removed from the solution after a predefined period of time.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: August 21, 2007
    Assignee: Chemstar Corporation
    Inventor: Mingzhong Su
  • Patent number: 7192490
    Abstract: Process for the treatment of cork or a cork-based material particularly with a view towards extracting contaminating organic compounds, in which said cork or said cork-based material is put into contact with a dense fluid under pressure at a temperature of from 10 to 120° C. and at a pressure of from 10 to 600 bars. Manufacturing installation for parts made of cork or a cork-based material, such as bottle corks, comprising an installation for treatment or extraction by putting the said cork or the said material into contact with a dense fluid under pressure.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: March 20, 2007
    Assignees: Commissariat a l'Energie Atomique, Sabate SA.
    Inventors: Guy Lumia, Christian Perre, Jean-Marie Aracil
  • Patent number: 7186301
    Abstract: Disclosed herein is a device and a method of cleaning a photomask, which prevents haze from being generated on a surface of the photomask during a photolithography process. The photomask is heat treated to remove residual ions on a surface thereof and to induce curing and oxidation of Cr and MoSiON layers, thereby preventing diffusion of the ions. Etching of Cr and MoSiON layers due to a cleaning process is suppressed in order to significantly reduce a change in phase and transmissivity of optical properties of Cr and MoSiON.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: March 6, 2007
    Assignee: PKL Co., Ltd.
    Inventors: Yong Dae Kim, Jong Min Kim, Han Byul Kang, Hyun Joon Cho, Sang Soo Choi
  • Patent number: 7186299
    Abstract: A method for cleaning and drying semiconductor wafers improves device yield by providing more advanced control of the ratio of drying fluid to cleaning fluid, for example the ratio of N2 vapor to IPA vapor. In addition, a quick drain process is employed to improve process throughput, and to further improve particle and watermark removal during the cleaning and drying steps.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: March 6, 2007
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Ki Hwan Park, Jong Kook Song, Mo Hyun Cho, Sung-Ho Jo, Sun Jae Lee, Pyung Ho Lim, Dong Wook Cho
  • Patent number: 7182820
    Abstract: Methods and apparatus for cleaning hearing aid devices are disclosed. Drying is facilitated in hearing instruments through a novel combination of heater and desiccant in an essentially closed system. Greater efficiency is obtained by minimizing the volume of gas, e.g., air, requiring moisture extraction.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: February 27, 2007
    Assignee: Magnatone Hearing Aid Corporation
    Inventors: Don E. K. Campbell, Srinivas Chari
  • Patent number: 7172657
    Abstract: In a state of the inside of a treatment chamber of treatment equipment being evacuated, therein a cleaning gas containing trifluoroaceticacid (TFA) as a cleaning agent is supplied. Metal such as copper used in the formation of an interconnection or an electrode and stuck on an inner wall surface of the treatment chamber, when coming into contact with the cleaning agent (TFA) in the cleaning gas, without forming an oxide or a metallic salt, is directly complexed. The complex is sublimed due to the evacuation and is exhausted outside the treatment chamber. Accordingly, at less labor and low cost, the cleaning can be efficiently implemented.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: February 6, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Yasuhiko Kojima, Yasuhiro Oshima
  • Patent number: 7163588
    Abstract: Contaminants such as photoresist are quickly removed from a wafer having metal features, using water, ozone and a base such as ammonium hydroxide. Processing is performed at room temperature to avoid metal corrosion. Ozone is delivered into a stream of process liquid or into the process environment or chamber. Steam may alternatively be used. A layer of liquid or vapor forms on the wafer surface. The ozone moves through the liquid layer via diffusion, entrainment, jetting/spraying or bulk transfer, and chemically reacts with the photoresist, to remove it.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: January 16, 2007
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 7159598
    Abstract: A method, system and apparatus for cleaning a tank through the use of a pair of spray heads arranged in operable communication with a pump via a pair of hose lines. One of the spray heads is operable to disperse a heated mist of cleaning solution, while the other spray head is operable to dispense a jet stream of the cleaning solution. The spray heads can be arranged in a closed loop, recirculating flow of the cleaning solution between the pump and the spray heads, or an open loop. Each hose line has a valve to control the flow of the cleaning solution therethrough so that the spray heads can operate independently from one another.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: January 9, 2007
    Assignee: ReNew Systems, Inc.
    Inventor: David B. Gregory
  • Patent number: 7138065
    Abstract: The invention relates to a method for removing an area of a layer of a component consisting of metal or a metal compound. According to prior art, corrosion products of a component are removed in a first step by applying a molten mass or by heating in a voluminous powder bed. This requires high temperatures or a large amount of space. The inventive method for removing corrosion products of a component is characterized in that a cleaning agent is applied locally, which removes the corrosion products by means of a gaseous reaction product.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: November 21, 2006
    Assignees: Siemens Aktiengesellschaft, Diffusion Alloys Ltd.
    Inventors: Norbert Czech, Andre Jeutter, Adrian Kempster, Ralph Reiche, Rolf Wilkenhöner
  • Patent number: 7125457
    Abstract: A method for removing an oxide material from a crack in a substrate, the method includes: applying a slurry paste comprising a fluoride salt to the crack; heating the slurry paste and the crack to at least a melting point of the fluoride salt to form a reaction product; and removing the reaction product.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: October 24, 2006
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Ann Melinda Ritter, Laurent Cretegny, Mark Dean Pezzutti, Stewart William Beitz
  • Patent number: 7097713
    Abstract: A method for removing a metallic layer from the surface of a ceramic substrate, the method including the steps of immersing the metallic coated ceramic substrate in a solution of up to 31% hydrochloric acid for a sufficient time to at least substantially dissolve or remove the metallic layer therefrom, removing the ceramic substrate from the acid solution, rinsing the ceramic substrate in a rinse solution, and annealing the ceramic substrate at a predetermined temperature for a sufficient time to at least reduce damage or defects in the surface of the ceramic substrate.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: August 29, 2006
    Assignee: The Boc Group, Inc.
    Inventors: Ronald Reginald Burgess, Ian Martin Davis
  • Patent number: 7097717
    Abstract: Disclosed is a method and device for collecting particulate contaminants removed using a CO2 decontamination medium from an early step of a decontamination process. The device removes particulate contaminants from a contaminated subject by a decontamination stream, and simultaneously forms another stream for collecting such contaminants into a collecting filter, thus preventing such contaminants from diffusing into the atmosphere. The device forms streams between the nozzles and the surface of the contaminated subject to readily move the nozzles along the surface of the subject without frictional resistance, to reduce the sense of fatigue of the operator.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 29, 2006
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Company Ltd.
    Inventors: Chong-Hun Jung, Jei-Kwon Moon, Hui Jun Won, Won-Zin Oh, Jae-Hyung Yoo
  • Patent number: 7045022
    Abstract: The present invention provides a method and process for removing adherent molten metal from a surface by applying a non-wetting agent for the metal to the surface or to the adherent molten metal. The non-wetting agent may be a pressurized fluid or applied by a pressurized fluid.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: May 16, 2006
    Assignee: Excera Materials Group, Inc.
    Inventors: Michael C. Breslin, Andrew C. Strange, Michael E. Fuller
  • Patent number: 7040327
    Abstract: There is disclosed a die cleaning method for removing a forming-material from a die used in forming the forming-material containing a binder, comprising the steps of: removing a part or all of the binder contained in the forming-material from the die; and removing the forming-material from the die, whereby the forming-material in the die can be removed without damaging or deforming the die for use in forming the forming-material containing the binder.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: May 9, 2006
    Assignee: NGK Insulators, LTD
    Inventors: Yukihisa Wada, Takahisa Kaneko, Masayuki Nate
  • Patent number: 7041177
    Abstract: A method of removing soil an article including the steps of immersing said article in an alkaline composition having a concentration of at least one source of alkalinity about 0.25% or higher, dehydrating the soil and rehydrating the soil at a pH which is neutral. The method is particularly useful for removing proteinaceous soil from processing equipment for dairy products.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: May 9, 2006
    Assignee: Ecolab Inc.
    Inventors: Richard O. Ruhr, Nathan Daniel Peitersen, Gerald Kurt Wichmann, Joseph I. Kravitz
  • Patent number: 7037381
    Abstract: Method for stripping ceramic coatings from the surfaces of articles. The apparatus includes a dedicated pressure vessel, such as an autoclave, which is maintained at an elevated temperature. Caustic solution is preheated to a first elevated temperature before injecting it into the autoclave, and the caustic solution is filtered and cooled after use in the autoclave. The articles are stripped of coating by maintaining the articles at an elevated temperature and pressure for a predetermined time. Various options include the use of analytical equipment to maintain the chemistry of the caustic solution and use of a volatile organic solution to prepressurize the autoclave and shorten cycle time. The articles are transferred to a separate pressure vessel after completion of the stripping operation so that the autoclave used for stripping can be maintained at an elevated temperature, thereby shortening the cycle time for stripping of additional articles.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: May 2, 2006
    Assignee: General Electric Company
    Inventors: Howard J. Farr, Keith H. Betscher, Richard R. Worthing, Jr., D. Sangeeta, Himanshu B. Vakil, Curtis A. Johnson, Thomas J. Cartier, Jr., Edward B. Stokes, Heinz Jaster, Alexander S. Allen
  • Patent number: 7029537
    Abstract: The present invention relates to a method of processing selected surfaces in a semiconductor process chamber by creating a temperature differential between the selected surfaces and contacting the surfaces with a reactant that preferentially react with a surface at one end of the temperature differential relative to the other selected surface(s). More particularly, the invention relates to the use of nitrogen trifluoride (NF3) gas for in situ cleaning of cold wall process chambers such as Rapid thermal Chemical Vaporization (“RTCVD”) systems.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 18, 2006
    Assignee: Micron Technology, Inc.
    Inventor: James Pan
  • Patent number: 7018483
    Abstract: Thermal cleaning and separation of metal parts is performed by a stator from an electric motor. Windings embedded in an organic, insulating material are placed and heated to 250°–500° C. under controlled conditions in a heating chamber, evaporating organic material and loosened windings. Flue gas is evaporated organic substances conducted through a closed pipe system to a condensator, where organic gases condense. The pipe system is designed so that condensate is conducted-on in the closed pipe system to a partly liquid filled vessel. Contents of this vessel are air and water that flow concurrently with the condensed flue gas as condensate, increasing content of organic material in the vessel and separating condensate from air. Air may be conducted to the oven for renewed absorption of organic material. All organic material evaporated from the heating chamber is collected in the vessel for later disposal in an environmentally correct and secure way.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: March 28, 2006
    Assignee: Maskinfabrikken Fornax A/S
    Inventor: Asbjøm Thoustrup
  • Patent number: 7011713
    Abstract: The method of continuously collecting jelly compounds from jelly filled cable is performed by recycling operation of a solvent by repeatedly heating, cleaning and condensing the recycling solvent used to deprive the jelly compounds of the jelly filled cable. The solvent can be retrieved for reuse unlimited times, and the collected jelly compounds can be purified for reuse too. The method is energy saving with less consumption of solvent. Absolutely no worry of an additional public nuisance.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: March 14, 2006
    Assignee: Chunghwa Telecom Co., Ltd.
    Inventors: Daw-Ming Fann, Shiow-Chen Lu, Yih-Chyuan Lin, Jih-Yang Liu, Hsi-Pai Hsu
  • Patent number: 6996479
    Abstract: An apparatus for measuring the water content of a water-containing liquid mixture contained in a tight chemistry tank includes a heating device for controlling the temperature of the liquid mixture to a temperature near the boiling point of the liquid mixture, a cooling medium system disposed at the top of the tight chemistry tank having a cooling medium inlet and a cooling medium outlet, a temperature measurement system for determining the temperature difference between the cooling medium inlet and outlet, and a computing device for calculating the water content of the liquid mixture from the temperature difference. Also provided is a tank for supplying water to the liquid mixture, and a control system for adjusting the amount of water supplied from the tank based upon the water content measured by the measuring apparatus. Also provided is a method for measure the water content.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: February 7, 2006
    Assignees: Infineon Technologies AG, Motorola Inc., Infineon Technologies SC300 GmbH & Co., KG
    Inventors: Stefan Ottow, Martin Welzel, Dan Wissel
  • Patent number: 6982006
    Abstract: A general method and apparatus for treating materials at high speed comprises the steps of dissolving a relatively high concentration ozone gas in a solvent at a relatively low predetermined temperature T1 to form an ozone-solvent solution with a relatively high dissolved ozone concentration, and heating either the ozone-water solution or the material to be treated or both, the ozone-solvent solution and the material to be oxidized with a point-of-use heater to quickly increase the temperature to a predetermined higher temperature T2>T1, and applying the ozone-solvent solution to said material(s) whereby the heated ozone-water solution will have a much higher dissolved ozone concentration at said higher temperature, than could be achieved if the ozone gas was initially dissolved in water at said higher temperature.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: January 3, 2006
    Inventors: David G. Boyers, Jay Theodore Cremer, Jr.
  • Patent number: 6974504
    Abstract: A method of remediating deposits within a pipeline comprising inserting a removable smaller pipe within said pipeline, providing an electrically insulating coating on said smaller pipe, providing a contactor proximate said distal end of said smaller pipe to electrically contact said internal diameter of said pipeline, flowing an electrical current along the wall area of said internal pipe, through said contactor, and along the wall area of said pipeline to generate heat within said smaller pipe to remediate blockages within said smaller pipe.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: December 13, 2005
    Inventor: Benton F. Baugh
  • Patent number: 6951220
    Abstract: A method of performing decontamination of a chamber for use in an IC fabrication system includes providing wet oxygen or a mixture comprising hydrochloric gas and oxygen in the chamber and raising the temperature in the chamber from a first lower temperature to a second higher temperature to cause the wet oxygen or the mixture comprising hydrochloric gas and oxygen to react with the germanium.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: October 4, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Farzad Arasnia, Paul R. Besser, Minh V. Ngo, Qi Xiang
  • Patent number: 6936112
    Abstract: Disclosed is a novel process for cleaning and restoring the operating efficiency of organic liquid chemical exchangers in a safe and effective manner and in a very short period of time, without a need to disassemble the equipment and without the need to rinse contaminate from the equipment after cleaning. Used is a formulation of monocyclic saturated terpene mixed with a non-ionic surfactant package specifically suited to oil rinsing. The terpene-based chemical is injected into organically contaminated exchangers using a novel process involving high-pressure steam to form a very effective cleaning vapor.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: August 30, 2005
    Assignee: Refined Technologies, Inc.
    Inventors: Bruce Robert Jansen, Sean Edward Sears
  • Patent number: 6893509
    Abstract: Disclosed is a novel process for interior cleaning and by cleaning, removing noxious gas and/or restoring the operating efficiency of organically contaminated hydrocarbon processing equipment in a safe and effective manner and in a very short period of time, without a need to manually enter an unsafe environment and mechanically remove organic contaminants. Used is a formulation of non-aqueous, monocyclic saturated terpene mixed with a non-ionic surfactant package. The terpene-based chemical is injected into organically contaminated equipment using a novel process involving high-pressure steam to form a very effective cleaning vapor.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: May 17, 2005
    Assignee: Refined Technologies, Inc.
    Inventors: Sean E. Sears, Kevin L. Roberts
  • Patent number: 6880561
    Abstract: A process for removing residue from the interior of a semiconductor process chamber using molecular fluorine gas (F2) as the principal precursor reagent. In one embodiment a portion of the molecular fluorine is decomposed in a plasma to produce atomic fluorine, and the resulting mixture of atomic fluorine and molecular fluorine is supplied to the chamber whose interior is to be cleaned. In another embodiment the molecular fluorine gas cleans the semiconductor process chamber without any plasma excitation. Molecular fluorine gas has the advantage of not being a global warming gas, unlike fluorine-containing gas compounds conventionally used for chamber cleaning such as NF3, C2F6 and SF6.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: April 19, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Haruhiro Harry Goto, William R. Harshbarger, Quanyuan Shang, Kam S. Law
  • Patent number: 6881274
    Abstract: A test carrier for testing bumped semiconductor components such dice, chip scale packages, BGA devices, and wafers is provided. The test carrier includes a base for retaining one or more components and contact members for making temporary electrical connections with contact balls on the components (e.g., solder balls). The test carrier also includes terminal contacts formed as hard metal balls, as hard metal balls coated with a non-oxidizing metal layer, or as glass, ceramic or plastic members coated with a conductive material. The contact members on the base protect the contact balls on the components from deformation during testing and handling. The terminal contacts on the test carrier are configured for multiple uses in a production environment without deformation. Also provided is a calibration carrier for calibrating semiconductor test systems for bumped components, and a cleaning carrier for cleaning test sockets for bumped components.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventor: David R. Hembree
  • Patent number: 6881277
    Abstract: The present invention relates to a method of processing selected surfaces in a semiconductor process chamber by creating a temperature differential between the selected surfaces and contacting the surfaces with a reactant that preferentially react with a surface at one end of the temperature differential relative to the other selected surface(s). More particularly, the invention relates to the use of nitrogen trifluoride (NF3) gas for in situ cleaning of cold wall process chambers such as Rapid thermal Chemical Vaporization (“RTCVD”) systems.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventor: James Pan
  • Patent number: 6878215
    Abstract: A method of removing a virgin metal oxide coating from the surface of a superalloy gas turbine engine component. The component bearing the applied metal oxide coating is contacted with an aqueous coating-removal solution, typically containing by weight about 10-25% alkali hydroxide, about 1-8% alkanolamine, and about 0.5-5% gluconate salt at a temperature of from about 170° F. (67° C.) to about 210° F. (99° C.), for a time sufficient to remove the metal oxide coating from the superalloy blade by gentle mechanical means. The metal oxide coating can comprise one or more metal oxide layers, such as a chromium oxide layer and an aluminum oxide layer.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 12, 2005
    Assignee: General Electric Company
    Inventor: Robert G. Zimmerman, Jr.
  • Patent number: 6871653
    Abstract: A method for cleaning a dish-cleaning appliance having a removable basket that carries a spray arm. The method comprises: uncoupling the liquid supply from the sprayer, spraying liquid against the peripheral side wall from the liquid supply, and draining the sprayed liquid from the wash chamber.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: March 29, 2005
    Assignee: Whirlpool Corporation
    Inventors: Ralph E. Christman, Arnold L. Denne, Rud J. Lauer
  • Patent number: 6872263
    Abstract: Disclosed is a novel process for interior cleaning and by cleaning, removing noxious gas and/or restoring the operating efficiency of organically contaminated hydrocarbon processing dynamic devices in a safe and effective manner and in a very short period of time, without a need to manually enter an unsafe environment and mechanically remove organic contaminants. Used is a formulation of non-aqueous, monocyclic saturated terpene mixed with a non-ionic surfactant package. The terpene-based chemical is injected into the organically contaminated device using a novel process involving high-pressure steam to form a very effective cleaning vapor. The device is activated during the process. The vapor may be optionally directed against the normal-flow direction of the device.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: March 29, 2005
    Assignee: Refined Technologies, Inc.
    Inventors: Bruce Robert Jansen, Sean Edward Sears
  • Patent number: 6869487
    Abstract: A novel chemistry, system and application technique reduces contamination of semiconductor wafers and similar substrates and enhances and expedites processing. A stream of liquid chemical is applied to the workpiece surface. Ozone is delivered either into the liquid process stream or into the process environment. The ozone is preferably generated by a high capacity ozone generator. The chemical stream is provided in the form of a liquid or vapor. A boundary layer liquid or vapor forms on the workpiece surface. The thickness of the boundary layer is controlled. The chemical stream may include ammonium hydroxide for simultaneous particle and organic removal, another chemical to raise the pH of the solution, or other chemical additives designed to accomplish one or more specific cleaning steps.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: March 22, 2005
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 6863740
    Abstract: Disclosed is a cleaning method of a ceramic member, which permits removing with a high accuracy the contaminants from a ceramic member contaminated with the contaminant. The cleaning method comprises the steps of processing the contaminated ceramic member with an alkaline chemical liquid having a pH value not smaller than 10 in the presence of an ultrasonic wave, processing the ceramic member processed with the alkaline chemical liquid with a prescribed acidic chemical liquid in the presence of an ultrasonic wave, and heating the ceramic member processed with the acidic chemical liquid under temperatures not lower than 1,000° C.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: March 8, 2005
    Assignee: Nihon Ceratec Co., Ltd.
    Inventors: Shirou Moriyama, Hiroshi Hatakeyama, Hiromichi Ohtaki
  • Patent number: 6855208
    Abstract: This invention relates to a metal part and other surface modification method suitable for the machining industry in which shot peening is typically used to refine the surface of a metal part (to introduce compressive residual stresses, to enhance fatigue strength, to harden the workpiece) and for fields in which parts need be cleaned. According to the present invention, workpiece W is placed within a first vessel which is filled with a fluid. The first vessel is pressurized by controlling the flow rate of the fluid flowing in the first vessel from nozzle 4 distant from said workpiece on the surface and of the fluid flowing from first vessel. Thus, the collapsing impact force of cavitation bubbles is increased so that the machined part will have its surface strengthened and cleaned by applying a peening effect to the surface of the part with said impact force.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: February 15, 2005
    Assignee: Japan Science and Technology Corporation
    Inventor: Hitoshi Soyama
  • Patent number: 6845778
    Abstract: An apparatus for cleaning a semiconductor substrate is provided. In embodiment of the present invention, a megasonic cleaner capable of providing localized heating is provided. The megasonic cleaner includes a transducer and a resonator. The resonator is configured to propagate energy from the transducer. The resonator has a first and a second end, the first end is operatively coupled to the transducer and the second end is configured to provide localized heating while propagating the energy from the transducer. A system for cleaning a semiconductor substrate through megasonic cleaning and a method for cleaning a semiconductor substrate is also provided.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: January 25, 2005
    Assignee: Lam Research Corporation
    Inventors: John M. Boyd, Katrina Mikhaylich
  • Patent number: 6843258
    Abstract: Provided herein is a method for cleaning a process chamber for semiconductor and/or flat panel display manufacturing. This method comprises the steps of converting a non-cleaning feed gas to a cleaning gas in a remote location and then delivering the cleaning gas to the process chamber for cleaning. Such method may further comprise the step of activating the cleaning gas outside the chamber before the delivery of the gas to the chamber. Also provided is a method of eliminating non-cleaning feed gas from the cleaning gas by cryo condensation.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: January 18, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Sanjay Yadav, William R. Harshbarger, Kam S. Law
  • Patent number: 6843855
    Abstract: Apparatuses and methods of processing a substrate. The apparatus includes a wet-cleaning chamber, a drying chamber, and a substrate transferring chamber which transfers a substrate to and from the wet-cleaning chamber and the drying chamber. The drying chamber is one of a supercritical drying chamber or a low pressure drying chamber. The wet-cleaning chamber is one of a single-wafer cleaning chamber, a horizontal spinning chamber, a megasonic wet-cleaning chamber, or a horizontal spinning chamber having acoustic waves transmitted to the substrate.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: January 18, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Steven Verhaverbeke
  • Patent number: 6843857
    Abstract: The invention encompasses methods for cleaning surfaces of wafers or other semiconductor articles. Oxidizing is performed using an oxidation solution which is wetted onto the surface. The oxidation solution can include one or more of: water, ozone, hydrogen chloride, sulfuric acid, or hydrogen peroxide. A rinsing step removes the oxidation solution and inhibits further activity. The rinsed surface is thereafter preferably subjected to a drying step. The surface is exposed to an oxide removal vapor to remove semiconductor oxide therefrom. The oxide removal vapor can include one or more of: acids, such as a hydrogen halide, for example hydrogen fluoride or hydrogen chloride; water; isopropyl alcohol; or ozone. The processes can use centrifugal processing and spraying actions.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: January 18, 2005
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 6840249
    Abstract: In order to clean a semiconductor device having a dielectric layer deposited on a top surface of a lower metal wiring of the semiconductor device, and a contact hole or a via hole formed in the dielectric layer to expose the lower metal line therethrough, the semiconductor device is located within a radio frequency (RF) cleaning chamber. A gas mixture of HCl and H2O is introduced into the RF cleaning chamber and Ar gas plasma is generated in the RF cleaning chamber to excite HCl gas so that the HCl gas and an excited HCl gas are used to remove carbon radicals and metal particles.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: January 11, 2005
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Bo Min Seo
  • Patent number: 6837943
    Abstract: A stripping solution is supplied onto the surface of a substrate and an alternating magnetic flux is applied to the substrate. The alternating magnetic flux induces a current in a conductive pattern of the substrate which heats the conductive pattern while the stripping solution is in contact with the substrate. The stripping solution, containing particles to be cleaned off the substrate, is then removed from the substrate.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: January 4, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-wook Lee, In-Seak Hwang
  • Publication number: 20040255977
    Abstract: A dishwasher includes a water inlet connectable to a water source. A dishwasher element is operable on water received through the inlet. A flow sensor is in fluid communication with the inlet and is operable to generate a control signal indicative of water flow through the inlet. A control apparatus is connected between the dishwasher element and the flow sensor and is operable to inhibit operation of the dishwasher element in response to the control signal.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Inventors: Laurence S. Slocum, Michael T. Clouser
  • Publication number: 20040255986
    Abstract: The method and apparatus are for safely cleaning live equipment. The method comprises the steps of heating a water-based solution by means of an apparatus to produce superheated steam; grounding this apparatus; conducting the superheated steam through an insulated conduct; and concentrating this superheated steam into a pressurized jet at an output of the insulated conduct. After the step of grounding the apparatus, the method further comprises the step of applying the pressurized jet through the insulated conduct output, onto the live equipment to be cleaned.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Applicant: HYDRO-QUEBEC
    Inventors: Robert Lanoie, Dave Bouchard, Yvon Turcotte
  • Publication number: 20040255978
    Abstract: Initially, process parameters for dense phase fluid cleaning are determined. Thereafter, a cleaning chamber containing a substrate is pressurized with a dense phase fluid, based on these process parameters. The substrate is then cleaned with the dense phase fluid, again based on these process parameters. Exhaust fluid is subsequently expelled from the cleaning chamber, and thereafter analyzed. The process parameters are then adjusted to adjusted process parameters based on the analysis of the exhaust fluid. Thereafter, the cleaning chamber is again pressurized and cleaning repeated. This pressurization and cleaning is based on the adjusted process parameters. Also, this pressurization and cleaning is repeated until the substrate is sufficiently clean.
    Type: Application
    Filed: June 18, 2003
    Publication date: December 23, 2004
    Inventors: Michael A. Fury, Robert W. Sherrill
  • Publication number: 20040255984
    Abstract: The present invention is directed to the use of a high vapor pressure liquid prior to or simultaneous with cryogenic cleaning to remove contaminants from the surface of substrates requiring precision cleaning such as semiconductors, metal films, or dielectric films. A liquid suitable for use in the present invention preferably has a vapor pressure above 5 kPa and a freezing point below −50° C.
    Type: Application
    Filed: July 7, 2004
    Publication date: December 23, 2004
    Inventors: Souvik Banerjee, Harlan Forrest Chung
  • Patent number: 6833032
    Abstract: An automatic deliming process for a steam oven cooker is described. The process initiates a deliming procedure after a predetermined time of normal operation, which period of time is determined by the hardness of the water in the local area. Upon the expiration of this period of time a microprocessor signals an operator to shut down normal operation of the oven, and initiate the deliming process. The microprocessor then activates a peristaltic pump which injects a predetermined quantity of deliming liquid from an external reservoir into the generator. After the deliming time has passed and the generator contents have cooled to 140° F. the microprocessor automatically activates a drain pump to drain the deliming solution from the generator. Subsequently the microprocessor activates a fill-solenoid opening and inlet from a reservoir of rinse water into the generator to rinse the same. The microprocessor then again opens the drain to drain the rinse water, and normal operation is resumed.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: December 21, 2004
    Assignee: Blodgett Holdings, Inc.
    Inventors: Scott Douglas, John Bardeau
  • Patent number: 6833109
    Abstract: In an apparatus, after completion of a CMP (i.e., chemical mechanical polishing) operation of a semiconductor wafer, the thus polished wafer is temporarily stored in a water tank before it is subjected to a post-CMP cleaning operation. During its storage period in the water tank, the wafer is prevented from being chemically attacked by an oxidizing agent contained in an abrasive used in the CMP operation. The apparatus includes: the water tank for storing the wafer therein; a pure water supply pipe for supplying pure water to the water tank; an anticorrosion agent supply pipe for supplying an anticorrosion agent to the pure water; a drain pipe connected with a lower portion of the water tank to discharge the water from the water tank; a return pipe for returning the discharged water to an upper portion of the water tank through a pump and a filter, the return pipe branching-off from the drain pipe; and, valves mounted on these pipes.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: December 21, 2004
    Assignee: NEC Electronics Corporation
    Inventors: Hidemitsu Aoki, Shinya Yamasaki
  • Patent number: 6830628
    Abstract: The invention encompasses methods for cleaning surfaces of wafers or other semiconductor articles. Oxidizing is performed using an oxidation solution which is wetted onto the surface. The oxidation solution can include one or more of: water, ozone, hydrogen chloride, sulfuric acid, or hydrogen peroxide. A rinsing step removes the oxidation solution and inhibits further activity. The rinsed surface is thereafter preferably subjected to a drying step. The surface is exposed to an oxide removal vapor to remove semiconductor oxide therefrom. The oxide removal vapor can include one or more of: acids, such as a hydrogen halide, for example hydrogen fluoride or hydrogen chloride; water; isopropyl alcohol; or ozone. The processes can use centrifugal processing and spraying actions.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: December 14, 2004
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman