Imager Including Structural Or Functional Details Of The Device (epo) Patents (Class 257/E27.13)

  • Patent number: 8643017
    Abstract: An active device array substrate including a first patterned conductive layer, a dielectric layer, a second patterned conductive layer, a passivation layer and pixel electrodes is provided. The first patterned conductive layer includes scan lines, common lines, gates and strip floating shielding patterns. The dielectric layer covering the first patterned conductive layer has first contact holes which expose a portion of the common lines, respectively. The second patterned conductive layer includes data lines, sources, drains and strip capacitance electrodes. Each strip capacitance electrode is electrically connected to one of the common lines through one of the first contact holes. A gap is formed between each data line and one strip capacitance electrode, and the strip floating shielding patterns are disposed under the data lines, the gap and the strip capacitance electrodes. Each pixel electrode is electrically connected to one of the drains through one of the second contact holes.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: February 4, 2014
    Assignee: Au Optronics Corporation
    Inventors: Chu-Yu Liu, Ming-Hung Shih, Chou-Chin Wu, I-Chun Chen
  • Publication number: 20130341692
    Abstract: A semiconductor device including first and second isolation regions supported by a substrate, a first array well supported by the first isolation region, the first array well having a first field implant layer embedded therein, the first field implant layer surrounding a first shallow trench isolation region, a second array well supported by the second isolation region, the second array well supporting a doped region and a drain and having a second field implant layer embedded therein, the second field implant layer surrounding a second shallow trench isolation region, a stack of photodiodes disposed in the substrate between the first and second isolation regions, and a gate oxide formed over an uppermost photodiode of the stack of the photodiodes, the gate oxide and a silicon of the uppermost photodiode forming an interface, a nitrogen concentration at the interface offset from a peak nitrogen concentration.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 26, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Hui Tseng, Jen-Cheng Liu, Dun-Nian Yaung, Tzu-Hsuan Hsu
  • Patent number: 8610229
    Abstract: The present disclosure provides an image sensor device and a method for manufacturing the image sensor device. An exemplary image sensor device includes a substrate having a front surface and a back surface; a plurality of sensor elements disposed at the front surface of the substrate, each of the plurality of sensor elements being operable to sense radiation projected towards the back surface of the substrate; a radiation-shielding feature disposed over the back surface of the substrate and horizontally disposed between each of the plurality of sensor elements; a dielectric feature disposed between the back surface of the substrate and the radiation-shielding feature; and a metal layer disposed along sidewalls of the dielectric feature.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Wen Hsu, Shih-Chang Liu, Yeur-Luen Tu
  • Patent number: 8598570
    Abstract: An organic transistor array includes gate electrodes provided on a substrate, source and drain electrodes provided above or below the gate electrodes via a gate insulator layer, and an organic semiconductor layer opposing the gate electrodes via the gate insulator layer, and forming a channel region between mutually adjacent source and drain electrodes. The organic transistor array in a plan view is sectioned into sections each forming a single pixel, and each section has a closest packed structure.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: December 3, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Keiichiro Yutani, Takumi Yamaga, Atsushi Onodera
  • Publication number: 20130307107
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A plurality of image sensors is disposed at the front side of the semiconductor substrate. A plurality of clear color-filters is disposed on the backside of the semiconductor substrate. A plurality of metal rings encircles the plurality of clear color-filters.
    Type: Application
    Filed: August 22, 2012
    Publication date: November 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Feng-Chi Hung
  • Patent number: 8587082
    Abstract: An imaging device includes: an optical sensor including a light receiving unit capable of forming an object image; a seal material for protecting the light receiving unit of the optical sensor; an intermediate layer formed at least between the light receiving unit and an opposite surface of the seal material facing the light receiving unit; and a control film arranged between the intermediate layer and the opposite surface of the seal material, wherein, in the control film, a cutoff wavelength is shifted to a shortwave side in accordance with an incident angle of light which is obliquely incident on the film.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: November 19, 2013
    Assignee: Sony Corporation
    Inventors: Hiroaki Yukawa, Kensaku Maeda, Taizo Takachi, Yasushi Maruyama
  • Publication number: 20130292751
    Abstract: An apparatus includes a semiconductor layer having an array of pixels arranged therein. A passivation layer is disposed proximate to the semiconductor layer over the array of pixels. A segmented etch stop layer including a plurality of etch stop layer segments is disposed proximate to the passivation layer over the array of pixels. Boundaries between each one of the plurality of etch stop layer segments are aligned with boundaries between pixels in the array of pixels.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 7, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai
  • Patent number: 8575614
    Abstract: A semiconductor device 100 includes a thin-film transistor 123 and a thin-film diode 124. The thin-film transistor 123 includes a semiconductor layer S1 with a channel region 114, a source region and a drain region 112, a gate electrode 109 that controls the conductivity of the channel region 114, and a gate insulating film 108 arranged between the semiconductor layer and the gate electrode 109. The thin-film diode 124 includes a semiconductor layer S2 with at least an n-type region 113 and a p-type region 117. The respective semiconductor layers S1 and S2 of the thin-film transistor 123 and the thin-film diode 124 are portions of a single crystalline semiconductor layer, obtained by crystallizing the same crystalline semiconductor film, but have been crystallized to mutually different degrees.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: November 5, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Naoki Makita
  • Publication number: 20130285180
    Abstract: A backside illuminated image sensor comprises a photodiode and a first transistor located in a first chip, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a second transistor formed in a second chip and a plurality of logic circuits formed in a third chip, wherein the second chip is stacked on the first chip and the third chip is stacked on the second chip. The logic circuit, the second transistor and the first transistor are coupled to each other through a plurality of boding pads and through vias.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Jui Wang, Szu-Ying Chen, Jen-Cheng Liu, Dun-Nian Yaung, Ping-Yin Liu, Lan-Lin Chao
  • Patent number: 8546810
    Abstract: A thin film transistor in which an effect of photo current is small and an On/Off ratio is high is provided. In a bottom-gate bottom-contact (coplanar) thin film transistor, a channel formation region overlaps with a gate electrode, a first impurity semiconductor layer is provided between the channel formation region and a second impurity semiconductor layer which is in contact with a wiring layer. A semiconductor layer which serves as the channel formation region and the first impurity semiconductor layer preferably overlap with each other in a region where they overlap with the gate electrode. The first impurity semiconductor layer and the second impurity semiconductor layer preferably overlap with each other in a region where they do not overlap with the gate electrode.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Yasuhiro Jinbo, Hiromichi Godo, Takafumi Mizoguchi, Shinobu Furukawa
  • Publication number: 20130249039
    Abstract: A device includes a semiconductor substrate having a front side and a backside. An active image sensor pixel array is disposed on the front side of the semiconductor substrate. A metal shield is disposed on the backside of, and overlying, the semiconductor substrate. The metal shield has an edge facing the active image sensor pixel array. The metal shield has a middle width, and a top width greater than the middle width.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yuan Hsu, Kun-Ei Chen, Huai-Tei Yang, Chien-Chung Chen
  • Publication number: 20130249040
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A photo-sensitive device is disposed on the front side of the semiconductor substrate. A dielectric layer is disposed on the backside of the semiconductor substrate, wherein the dielectric layer is over a back surface of the semiconductor substrate. A metal shield is over the dielectric layer and overlapping the photo-sensitive device. A metal plug penetrates through the dielectric layer, wherein the metal plug electrically couples the metal shield to the semiconductor substrate.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhe-Ju Liu, Chi-Cherng Jeng, Kuo-Cheng Lee, Szu-Hung Yang, Po-Zen Chen, Chi-Chin Hsu
  • Patent number: 8541820
    Abstract: According to one embodiment, a semiconductor device includes the following structure. The first insulating film is formed on a first major surface of a semiconductor substrate. The electrode pad is formed in the first insulating film. The electrode pad includes a conductive film. At least a part of the conductive film includes a free region in which the conductive film is not present. The external connection terminal is formed on a second major surface facing the first major surface. The through-electrode is formed in a through-hole formed from the second major surface side of the semiconductor substrate and reaching the electrode pad. The first insulating film is present in the free region, and a step, on a through-electrode side, between the first insulating film being present in the free region and the electrode pad is not greater than a thickness of the electrode pad.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: September 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuko Hayasaki, Kenichiro Hagiwara
  • Publication number: 20130241018
    Abstract: A device includes a semiconductor substrate having a front side and a backside, a photo-sensitive device disposed on the front side of the semiconductor substrate, and a first and a second grid line parallel to each other. The first and the second grid lines are on the backside of, and overlying, the semiconductor substrate. The device further includes an adhesion layer, a metal oxide layer over the adhesion layer, and a high-refractive index layer over the metal layer. The adhesion layer, the metal oxide layer, and the high-refractive index layer are substantially conformal, and extend on top surfaces and sidewalls of the first and the second grid lines.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Min Hao Hong, Ting-Chun Wang, Chung-Ren Sun
  • Publication number: 20130234272
    Abstract: An image-sensing module includes a substrate unit, a light-transmitting unit, an image-sensing unit and a lens unit. The substrate unit includes at least one flexible substrate having at least one through opening. The light-transmitting unit includes at least one light-transmitting element disposed on the top surface of the flexible substrate and corresponding to the through opening. The image-sensing unit includes at least one image-sensing element disposed on the bottom surface of the light-transmitting element and embedded in the through opening, and the image-sensing element is electrically connected to the flexible substrate. The lens unit includes an opaque frame disposed on the top surface of the flexible substrate to surround the light-transmitting element and a lens positioned on the opaque frame to correspond to the light-transmitting element.
    Type: Application
    Filed: April 20, 2012
    Publication date: September 12, 2013
    Applicant: AZUREWAVE TECHNOLOGIES, INC.
    Inventor: CHI-HSING HSU
  • Publication number: 20130234029
    Abstract: An apparatus includes a first photodetector array including visible light photodetectors disposed in semiconductor material to detect visible light included in light incident upon the semiconductor material. The apparatus also includes a second photodetector array including time of flight (“TOF”) photodetectors disposed in the semiconductor material to capture TOF data from reflected light reflected from an object included in the light incident upon the semiconductor material. The reflected light reflected from the object is directed to the TOF photodetectors along an optical path through the visible light photodetectors and through a thickness of the semiconductor material. The visible light photodetectors of the first photodetector array are disposed in the semiconductor material along the optical path between the object and the TOF photodetectors of the second photodetector array.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 12, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventor: Manoj Bikumandla
  • Patent number: 8530896
    Abstract: A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel unit is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an inter-layer insulation film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: September 10, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Patent number: 8519456
    Abstract: A solid-state image pickup device in which electric charges accumulated in a photodiode conversion element are transferred to a second diffusion layer through a first diffusion layer.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: August 27, 2013
    Assignee: Sony Corporation
    Inventors: Atsushi Masagaki, Ikuhiro Yamamura
  • Patent number: 8507960
    Abstract: A solid-state imaging device that includes a pixel including a photoelectric conversion section, and a conversion section that converts an electric charge generated by photoelectric conversion into a pixel signal. In the solid-state imaging device, substantially only a gate insulation film is formed on a substrate corresponding to an area under a gate electrode of at least one transistor in the pixel.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventor: Kazuichiro Itonaga
  • Patent number: 8492865
    Abstract: An image sensor array includes a substrate layer, a metal layer, an epitaxial layer, a plurality of imaging pixels, and a contact dummy pixel. The metal layer is disposed above the substrate layer. The epitaxial layer is disposed between the substrate layer and the metal layer. The imaging pixels are disposed within the epitaxial layer and each include a photosensitive element for collecting an image signal. The contact dummy pixel is dispose within the epitaxial layer and includes an electrical conducting path through the epitaxial layer. The electrical conducting path couples to the metal layer above the epitaxial layer.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: July 23, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Duli Mao, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
  • Publication number: 20130181258
    Abstract: An image sensor includes a substrate having opposite first and second sides, a multilayer structure on the first side of the substrate, and a photo-sensitive element on the second side of the substrate. The photo-sensitive element is configured to receive light that is incident upon the first side and transmitted through the multilayer structure and the substrate. The multilayer structure includes first and second light transmitting layers. The first light transmitting layer is sandwiched between the substrate and the second light transmitting layer. The first light transmitting layer has a refractive index that is from 60% to 90% of a refractive index of the substrate. The second light transmitting layer has a refractive index that is lower than the refractive index of the first light transmitting layer and is from 40% to 70% of the refractive index of the substrate.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shiu-Ko JangJian, Kei-Wei CHEN, Szu-An WU, Ying-Lang WANG
  • Patent number: 8487351
    Abstract: The image sensor and an image sensing system including the same are provided. The image sensor includes a semiconductor substrate, a pixel array formed at a pixel area located in the semiconductor substrate and comprising a plurality of photoelectric converts, a plurality of driver circuits formed at a circuit area defined in the semiconductor substrate. The image sensor includes at least one heat blocker or heat shield. The at least one heat blocker may be formed between the pixel area and the circuit area in the semiconductor substrate. The heat blocker or heat shield may block or dissipate heat generated at the circuit area from being transferred to the pixel area through the semiconductor substrate. The heat blocker or heat shield may be used in image sensors using a back-side illumination sensor (BIS) structure or image sensors using a silicon on insulator (SOI) semiconductor substrate.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung Ho Lee, Dong-Yoon Jang, Jung Chak Ahn, Moo Sup Lim, Yong Jei Lee, Jong Eun Park
  • Publication number: 20130175650
    Abstract: An image sensor assembly includes an image sensor die attached adjacent to a cavity and a lower surface in a preformed package having substantially vertical surfaces extending from the lower surface to an upper surface of the package. The image sensor die may include a charge-coupled device or an active pixel sensor imager that provides the light receiving surface for capturing the image. A cover is placed over the upper surface of the package. The cover may be a glass cover or an infrared cut filter. A light absorbing layer is applied to the cover in registry with the image sensor die such that the light absorbing layer prevents light from falling on the substantially vertical surfaces of the preformed package without preventing the passage of light that falls on the light receiving surface of the image sensor die.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: Apple Inc
    Inventor: Jeffrey N. Gleason
  • Publication number: 20130168794
    Abstract: A sensor array is integrated onto the same chip as core logic. The sensor array uses a first polysilicon and the core logic uses a second polysilicon. The first polysilicon is etched to provide a tapered profile edge in the interface between the sensor array and the core logic regions to avoid an excessive step. Amorphous carbon can be deposited over the interface region without formation of voids, thus providing for improved manufacturing yield and reliability.
    Type: Application
    Filed: January 2, 2012
    Publication date: July 4, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chi Fu, Ching-Sen Kuo, Wen-Chen Lu, Chih-Yuan Chen
  • Patent number: 8476102
    Abstract: A method for manufacturing a solid state image pickup device including a first active region provided with a first conversion unit, a second active region provided with a second conversion unit, and a third active region adjoining the first and the second active regions with a field region therebetween and being provided with a pixel transistor, the method including the steps of ion-implanting first conductivity type impurity ions to form a semiconductor region serving as a potential barrier against the signal carriers at a predetermined depth in the third active region and ion-implanting second conductivity type impurity ions into the third active region with energy lower than the above-described ion-implantation energy.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: July 2, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideaki Takada, Toru Koizumi, Yasuo Yamazaki, Tatsuya Ryoki
  • Publication number: 20130134541
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A photo-sensitive device is disposed at a surface of the semiconductor substrate, wherein the photo-sensitive device is configured to receive a light signal from the backside of the semiconductor substrate, and convert the light signal to an electrical signal. An amorphous-like adhesion layer is disposed on the backside of the semiconductor substrate. The amorphous-like adhesion layer includes a compound of nitrogen and a metal. A metal shielding layer is disposed on the backside of the semiconductor substrate and contacting the amorphous-like adhesion layer.
    Type: Application
    Filed: March 14, 2012
    Publication date: May 30, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chieh Chang, Jian-Shin Tsai, Chih-Chang Huang, Ing-Ju Lee, Ching-Yao Sun, Jyun-Ru Wu, Ching-Che Huang, Szu-An Wu, Ying-Lang Wang
  • Publication number: 20130134542
    Abstract: Provided is a semiconductor image sensor device that includes a non-scribe-line region and a scribe-line region. The image sensor device includes a first substrate portion disposed in the non-scribe-line region. The first substrate portion contains a doped radiation-sensing region. The image sensor device includes a second substrate portion disposed in the scribe-line region. The second substrate portion has the same material composition as the first substrate portion. Also provided is a method of fabricating an image sensor device. The method includes forming a plurality of radiation-sensing regions in a substrate. The radiation-sensing regions are formed in a non-scribe-line region of the image sensor device. The method includes forming an opening in a scribe-line region of the image sensor device by etching the substrate in the scribe-line region. A portion of the substrate remains in the scribe-line region after the etching. The method includes filling the opening with an organic material.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shou-Shu Lu, Hsun-Ying Huang, Hsin-Jung Huang, Chun-Mao Chiu, Chia-Chi Hsiao, Yung-Cheng Chang
  • Patent number: 8450822
    Abstract: Disclosed herein an image sensor chip, including a substrate having at least one via extending through at least one inter layer dielectric (ILD); a first conductive layer over the ILD, wherein the first conductive layer has a first thickness; a second conductive layer over the first conductive layer, wherein the second conductive layer has a second thickness of less than the first thickness; a polymer layer over the second conductive layer, the polymer layer including a cavity; a plurality of cavity components in the cavity; and an optically transparent layer contacting the polymer layer and covering the cavity.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Robert K. Leidy, Richard J. Rassel
  • Publication number: 20130127003
    Abstract: Disclosed herein is a solid-state imaging element including: a transfer section configured to transfer charge generated simultaneously by a photoelectric conversion section in all pixels to a memory section and have a metal gate; and a light-shielding section formed by filling a metal into a groove portion formed by digging an interlayer insulating film around the transfer section.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 23, 2013
    Applicant: SONY CORPORATION
    Inventor: SONY CORPORATION
  • Publication number: 20130113968
    Abstract: Optical isolation is provided for optically black pixels in image sensors. Image sensors, such as backside illumination (BSI) image sensors, may have an active pixel array and an array having optically black pixels. Isolation structures such as a metal wall may be formed in a dielectric stack between an active pixel array and optically black pixels. Patterned shallow trench isolation regions or polysilicon regions may be formed in a substrate between an active pixel array and optically black pixels. An absorption region such as a germanium-doped absorption region may be formed in a substrate between an active pixel array and optically black pixels. Optical isolation and absorption regions may be formed in a ring surrounding an active pixel array.
    Type: Application
    Filed: August 16, 2012
    Publication date: May 9, 2013
    Inventors: Victor Lenchenkov, Robert Daniel McGrath
  • Publication number: 20130100322
    Abstract: A solid-state image sensor has a plurality of pixel units, each pixel unit including a plurality of pixels, and a charge-voltage converter shared by the plurality of pixels. The sensor includes a structural portion including a plurality of wiring layers, an interlayer insulating film, and light waveguides configured by embedding, in portions of the interlayer insulating film located above the photoelectric converters, a material having a refractive index higher than that of the interlayer insulating film. A dummy pattern is formed in the structural portion to reduce a difference between a sensitivity of a first pixel and that of a second pixel, which is produced by a difference between a structure in a periphery of the light waveguide arranged above the photoelectric converter of the first pixel and that of the second pixel.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 25, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Patent number: 8420434
    Abstract: A solid state imaging device having a back-illuminated type structure in which a lens is formed on the back side of a silicon layer with a light-receiving sensor portion being formed thereon. Insulating layers are buried into the silicon layer around an image pickup region, with the insulating layer being buried around a contact layer that connects an electrode layer of a pad portion and an interconnection layer of the surface side. A method of manufacturing such a solid-state imaging device is also provided.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 16, 2013
    Assignee: Sony Corporation
    Inventors: Yuichi Yamamoto, Hayato Iwamoto
  • Publication number: 20130088626
    Abstract: A method of manufacturing a solid-state image sensor having a photoelectric conversion portion includes forming a silicon nitride film by a low-pressure chemical vapor deposition method using hexachlorodisilane (Si2Cl6) as a material gas such that the silicon nitride film covers at least a part of the photoelectric conversion portion.
    Type: Application
    Filed: September 24, 2012
    Publication date: April 11, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Publication number: 20130087875
    Abstract: In a photoelectric conversion device capable of adding signals of photoelectric conversion elements included in each of photoelectric conversion units, each of the photoelectric conversion elements includes a first semiconductor region of a first conductivity type for collecting a signal charge, a second semiconductor region of a second conductivity type is arranged between the photoelectric conversion elements arranged adjacent to each other and included in the photoelectric conversion unit, and a third semiconductor region of the second conductivity type is arranged between the photoelectric conversion elements arranged adjacent to each other among the plurality of photoelectric conversion elements and included in different photoelectric conversion units arranged adjacent to each other. An impurity concentration of the second semiconductor region is lower than an impurity concentration of the third semiconductor region.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 11, 2013
    Applicant: Canon Kabushiki Kaisha
    Inventor: Canon Kabushiki Kaisha
  • Publication number: 20130089237
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. The light sensor includes a first electrode, a second electrode, a third electrode, and a light-absorbing semiconductor in electrical communication with each of the first electrode, the second electrode, and the third electrode. A light-obscuring material to substantially attenuate an incidence of light onto a portion of the light-absorbing semiconductor is disposed between the second electrode and the third electrode. An electrical bias is to be applied between the second electrode, and the first and the third electrodes and a current flowing through the second electrode is related to the light incident on the light sensor. Additional methods and apparatuses are described.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 11, 2013
    Applicant: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian
  • Patent number: 8415725
    Abstract: A solid-state imaging device including: a substrate; a light-receiving part; a second-conductivity-type isolation layer; a detection transistor; and a reset transistor.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: April 9, 2013
    Assignee: Sony Corporation
    Inventor: Isao Hirota
  • Patent number: 8415727
    Abstract: Embodiments of a process comprising forming a pixel on a front side of a substrate, thinning the substrate, depositing a doped silicon layer on a backside of the thinned substrate, and diffusing a dopant from the doped silicon layer into the substrate. Embodiments of an apparatus comprising a pixel formed on a front side of a thinned substrate, a doped silicon layer formed on a backside of the thinned substrate, and a region in the thinned substrate, and near the backside, where a dopant has diffused from the doped silicon layer into the thinned substrate. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 9, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventor: Sohei Manabe
  • Patent number: 8410569
    Abstract: A solid-state imaging device includes a first substrate including a light-sensing portion configured to perform photoelectric conversion of incident light and a wiring portion provided on a light-incident side; an optically transparent second substrate provided on a wiring portion side of the first substrate at a certain distance; a through-hole provided in the first substrate; a through-via provided in the through-hole; a front-surface-side electrode connected to the through-via and provided on a front surface of the first substrate; a back-surface-side electrode connected to the through-via and provided on a back surface of the first substrate; and a stopper electrode provided on the front-surface-side electrode and filling a space between the front-surface-side electrode and the second substrate.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 2, 2013
    Assignee: Sony Corporation
    Inventors: Ikuo Yoshihara, Masaya Nagata, Naoto Sasaki, Taku Umebayashi, Hiroshi Takahashi, Yoichi Otsuka, Isaya Kitamura, Tokihisa Kaneguchi, Keishi Inoue, Toshihiko Hayashi, Hiroyasu Matsugai, Mayoshi Aonuma, Hiroshi Yoshioka
  • Publication number: 20130075849
    Abstract: According to one embodiment, a solid state imaging device includes a sensor substrate curved such that an upper face having a plurality of pixels formed is recessed and an imaging lens provided on the upper face side.
    Type: Application
    Filed: March 9, 2012
    Publication date: March 28, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro SUZUKI, Risako Ueno, Honam Kwon, Mitsuyoshi Kobayashi, Hideyuki Funaki
  • Publication number: 20130062717
    Abstract: A circuit board includes a board having a hole formed therein, and an imager that is bonded to a first region including at least a portion of the hole in a front surface of the board.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 14, 2013
    Applicant: Sony Corporation
    Inventors: Toshio Watanabe, Isao Ichimura, Tatsuo Maeda, Takuma Nagata
  • Publication number: 20130057735
    Abstract: A solid-state imaging device includes a color filter array based on a checkered pattern array and in which two pixels adjacent to each other in at least one of upper/lower and right/left directions have the same color. The color filter array is a color filter array in which a spatial sampling point (x, y) is approximately arranged in at least one of (x=3*(2n?1+oe)+1±2 and y=3m?2 (n and m are an integer, oe has a value of 0 when m is an odd number and 1 when m is an even number)) and (x=3*(2n?1+oe)+1 and y=3m?2±2 (n and m denote an integer, and oe has a value of 0 when m is an odd number and 1 when m is an even number)).
    Type: Application
    Filed: October 31, 2012
    Publication date: March 7, 2013
    Applicant: Sony Corporation
    Inventor: Sony Corporation
  • Publication number: 20130056808
    Abstract: An isolation area that provides additional active area between semiconductor devices on an integrated circuit is described. In one embodiment, the invention includes a complementary metal oxide semiconductor transistor of an image sensor having a source, a drain, and a gate between the source and the drain, the transistor having a channel to couple the source and the drain under the influence of the gate, and an isolation barrier surrounding a periphery of the source and the drain to isolate the source and the drain from other devices, wherein the isolation barrier is distanced from the central portion of the channel.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Inventors: Hsin-Chih Tai, Keh-Chiang Ku, Duli Mao, Vincent Venezia, Gang Chen
  • Patent number: 8390036
    Abstract: An image pickup device includes a plurality of first electrodes, a second electrode, a third electrode, a photoelectric conversion layer, a plurality of signal reading portions, at least one of electric potential adjusting portions. The plurality of first electrodes is arranged on an upper side of a substrate in two dimensions with a predetermined gap interposed between one of the first electrodes and another first electrode adjacent to the one of the first electrode. The second electrode is arranged next to the first electrodes arranged on an outermost side of the first electrodes with the predetermined gap interposed between the first electrodes arranged on the outermost side and the second electrode. The third electrode faces both of the plurality of first electrodes and the second electrode. The photoelectric conversion layer is disposed between the plurality of first electrodes and the second electrode and the third electrode.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 5, 2013
    Assignee: Fujifilm Corporation
    Inventor: Takashi Goto
  • Publication number: 20130048860
    Abstract: A photoelectric conversion substrate includes: a substrate; plural pixels, each provided with a sensor portion and a switching element that are formed on the substrate, the sensor portion including a photoelectric conversion element that generates charge according to illuminated light, and the switching element reading out the charge from the sensor portion; a flattening layer that flattens the surface of the substrate having the switching elements and the sensor portions formed thereon; and a first conducting member that is formed over the whole face of the flattening layer and configured such that a voltage applied to the first conducting member is selected to be a predetermined voltage.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 28, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Naoyuki NISHINO, Keiichiro SATO, Yasunori OHTA, Haruyasu NAKATSUGAWA
  • Patent number: 8378391
    Abstract: A solid-state image sensor which holds a potential for a long time and includes a thin film transistor with stable electrical characteristics is provided. When the off-state current of a thin film transistor including an oxide semiconductor layer is set to 1×10?13 A or less and the thin film transistor is used as a reset transistor and a transfer transistor of the solid-state image sensor, the potential of the signal charge storage portion is kept constant, so that a dynamic range can be improved. When a silicon semiconductor which can be used for a complementary metal oxide semiconductor is used for a peripheral circuit, a high-speed semiconductor device with low power consumption can be manufactured.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: February 19, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Publication number: 20130032921
    Abstract: An image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident through a first side of the image sensor to collect an image charge. The stress adjusting layer is disposed over the first side of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 7, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventor: OMNIVISION TECHNOLOGIES, INC.
  • Publication number: 20130026596
    Abstract: A method of forming a focal plane array by: preparing a first wafer having sensing material provided on a surface, which is covered by a sacrificial layer; preparing a second wafer including read-out integrated circuit and a contact pad, which is covered by another sacrificial layer into which are formed support legs in contact with the contact pad, the support legs being covered with a further sacrificial layer; bonding the sacrificial layers of the first and second wafers together such that the sensing material is transferred from the first wafer to the second wafer when a sacrificial bulk layer of the first wafer is removed; defining a pixel in the sensing material and forming a conductive via through the pixel for providing a connection between an uppermost surface of the pixel and the supporting legs; and removing the sacrificial layers to release the pixel, with the supporting legs underneath it.
    Type: Application
    Filed: March 1, 2011
    Publication date: January 31, 2013
    Applicant: SENSONOR TECHNOLOGIES AS
    Inventors: Adriana Lapadatu, Gjermund Kittilsland
  • Publication number: 20130027577
    Abstract: An image sensor may be provided in which a pixel array includes imaging pixels and application-specific pixels. The application-specific pixels may include depth-sensing pixels, infrared imaging pixels, or other types of application-specific pixels. A color filter array may be formed over the pixel array. The color filter array may include Bayer color filter array formed over the imaging pixels. The color filter array may also include a plurality of green color filter elements formed over the application-specific pixels. Barrier structures may be interposed between imaging pixels and application-specific pixels. The barrier structures may be configured to reduce or eliminate optical crosstalk between imaging pixels and adjacent application-specific pixels. The barrier structures may include an opaque photodefinable material such as black or blue photodefinable material that may be configured to filter out wavelength bands of interest.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 31, 2013
    Inventors: Richard Holscher, Gennadly Agranov, Dongqing Cao
  • Patent number: 8362488
    Abstract: The present invention is directed to a flexible backplane for direct drive display devices and methods for its manufacture. The flexible backplane has many advantages. Because there is no need for a polyimide layer and only one layer of metal foil is used, the backplanes may be manufactured at a relatively low cost.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 29, 2013
    Assignee: SiPix Imaging, Inc.
    Inventors: Yi-Shung Chaug, Ching-Shon Ho
  • Publication number: 20130020468
    Abstract: A solid-state imaging device has a sensor substrate having a pixel region on which photoelectric converters are arrayed; a driving circuit provided on a front face side that is opposite from a light receiving face as to the photoelectric converters on the sensor substrate; an insulation layer, provided on the light receiving face, and having a stepped construction wherein the film thickness of the pixel region is thinner than the film thickness in a periphery region provided on the outside of the pixel region; a wiring provided to the periphery region on the light receiving face side; and on-chip lenses provided to positions corresponding to the photoelectric converters on the insulation layer.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 24, 2013
    Applicant: SONY CORPORATION
    Inventors: Ikue Mitsuhashi, Kentaro Akiyama, Koji Kikuchi