Electrical Characteristic Sensed Patents (Class 438/10)
  • Patent number: 8575664
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 5, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20130258627
    Abstract: Various resistor circuits and methods of making and using the same are disclosed. In one aspect, a method of manufacturing is provided that includes forming a resistor onboard an interposer. The resistor is adapted to dampen a capacitive network. The capacitive network has at least one capacitor positioned external to the interposer.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Fei Guo, Feng Zhu, Julius Din, Anwar Kashem, Sally Yeung
  • Patent number: 8546153
    Abstract: There is provided a resin dispensing apparatus for a light emitting device package and a method of manufacturing a light emitting device package using the same. The resin dispensing apparatus includes a resin dispensing part including a resin storage portion filled with a resin therein and a resin discharge portion combined with the resin storage portion and discharging the resin therefrom; a supporting part having a light emitting device package disposed on an upper surface thereof and electrically connected to the light emitting device package; a voltage applying part having both terminals respectively connected to the resin dispensing part and the supporting part to apply a voltage thereto; and a sensing part electrically connected to the resin dispensing part and the supporting part individually and sensing a contact between the resin dispensing part and the light emitting device package with an electrical signal.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo Yong Kim, Seung Ki Choi, Jee Hun Hong
  • Publication number: 20130244348
    Abstract: Methods are provided for fine tuning substrate resistivity. The method includes measuring a resistivity of a substrate after an annealing process, and fine tuning a subsequent annealing process to achieve a target resistivity of the substrate. The fine tuning is based on the measured resistivity.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. GAMBINO, Derrick LIU, Dale W. MARTIN, Gerd PFEIFFER
  • Patent number: 8538571
    Abstract: A maintenance engineer can analyze an abnormal state with less difficulty in a rapid and correct manner independent of his/her skill. A substrate processing system comprises: a substrate processing apparatus configured to operate according to a recipe defining a process sequence and process conditions, and a group managing apparatus connected to the substrate processing apparatus. The group managing apparatus comprises an analysis support unit. The analysis support unit is configured to extract check item information relating to both abnormal state information for indentifying an abnormal state occurring when the recipe is executed and apparatus type information for identifying the type of the substrate processing apparatus at which the abnormal state occurs, and to prepare a check item table comprising the extracted check item information.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 17, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kazuhide Asai, Hiroyuki Iwakura, Kazuyoshi Yamamoto
  • Publication number: 20130236992
    Abstract: In a testing method for an LD, an LD die is held. Then, electric current increasing with a fixed increment and having a sequence of current values is supplied to the LD die to drive the LD die to emit light and a sequence of voltage values across the LD die and corresponding to the sequence of current values, respectively, is metered. A sequence of power values corresponding to the sequence of current values, respectively, is also metered. Next, an electro-optical property of the LD die is determined according to the sequence of current values, the sequence of voltage values, and the sequence of power values. Finally, if the LD die is determined to be qualified based upon the electro-optical property of the LD die, the LD die is packaged into the LD.
    Type: Application
    Filed: June 27, 2012
    Publication date: September 12, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: BING-HENG LEE, KUO-FONG TSENG
  • Patent number: 8530941
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 10, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo
  • Patent number: 8519447
    Abstract: An ion sensitive sensor having an EIS structure, including: a semiconductor substrate, on which a layer of a substrate oxides is produced; an adapting or matching layer, which is prepared on the substrate oxide; a chemically stable, intermediate insulator, which is deposited on the adapting or matching layer; and an ion sensitive, sensor layer, which is applied on the intermediate insulator. The adapting or matching layer differs from the intermediate insulator and the substrate oxide in its chemical composition and/or structure. The adapting or matching layer and the ion sensitive, sensor layer each have an electrical conductivity greater than that of the intermediate insulator. There is an electrically conductive connection between the adapting or matching layer and the ion sensitive, sensor layer.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 27, 2013
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventor: Hendrik Zeun
  • Patent number: 8519456
    Abstract: A solid-state image pickup device in which electric charges accumulated in a photodiode conversion element are transferred to a second diffusion layer through a first diffusion layer.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: August 27, 2013
    Assignee: Sony Corporation
    Inventors: Atsushi Masagaki, Ikuhiro Yamamura
  • Patent number: 8519448
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 27, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20130210173
    Abstract: To provide improved planarization, techniques in accordance with this disclosure include a CMP station that includes a plurality of concentric temperature control elements arranged over a number of concentric to-be-polished wafer surfaces. During polishing, a wafer surface planarity sensor monitors relative heights of the concentric to-be-polished wafer surfaces, and adjusts the temperatures of the concentric temperature control elements to provide an extremely well planarized wafer surface. Other systems and methods are also disclosed.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jiann Lih Wu, Bo-I Lee, Soon Kang Huang, Chih-I Peng, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20130207107
    Abstract: In a method of improving bump allocation for a semiconductor device and a semiconductor device with improved bump allocation, a predetermined signal bump is surrounded with at least three bumps, each being a ground bump or a paired differential signal bump.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yung-Hsin KUO
  • Patent number: 8502372
    Abstract: An electronic device includes first and second electronic device dice. The first electronic device die is embedded within a resin layer. A dielectric layer is located over the device die and the resin layer. First interconnects within the dielectric layer connect a first subset of electrical contacts on the first electronic device to corresponding terminals at a surface of the dielectric that are located over the first electronic device. Second interconnects within the dielectric layer connect a second subset of electrical contacts on the first electronic device to corresponding bump pads at a surface of the dielectric that are located over the resin layer.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 6, 2013
    Assignee: LSI Corporation
    Inventor: John Osenbach
  • Patent number: 8502278
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 6, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 8501631
    Abstract: A method for controlling a plasma processing system using wafer bias information derived from RF voltage information is proposed. The RF voltage is processed via an analog or digital methodology to obtain peak voltage information at least for each of the fundamental frequencies and the broadband frequency. The peak voltage information is then employed to derive the wafer bias information to serve as a feedback or control signal to hardware/software of the plasma processing system.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: August 6, 2013
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., Henry S. Povolny
  • Patent number: 8492799
    Abstract: Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 23, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M Rothberg, Wolfgang Hinz
  • Patent number: 8486761
    Abstract: A multi-chip light emitting device (LED) uses a low-cost carrier structure that facilitates the use of substrates that are optimized to support the devices that require a substrate. Depending upon the type of LED elements used, some of the LED elements may be mounted on the carrier structure, rather than on the more expensive ceramic substrate. In like manner, other devices, such as sensors and control elements, may be mounted on the carrier structure as well. Because the carrier and substrate structures are formed independent of the encapsulation and other after-formation processes, these structures can be tested prior to encapsulation, thereby avoiding the cost of these processes being applied to inoperative structures.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: July 16, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Serge J. Bierhuizen
  • Patent number: 8486724
    Abstract: An optical emitter is fabricated by bonding a Light-Emitting Diode (LED) die to a package wafer, electrically connecting the LED die and the package wafer, forming a phosphor coating over the LED die on the package wafer, molding a lens over the LED die on the package wafer, molding a reflector on the package wafer, and dicing the wafer into at least one optical emitter.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 16, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Hao-Wei Ku, Chung Yu Wang, Yu-Sheng Tang, Hsin-Hung Chen, Hao-Yu Yang, Ching-Yi Chen, Hsiao-Wen Lee, Chi Xiang Tseng, Sheng-Shin Guo, Tien-Ming Lin, Shang-Yu Tsai
  • Publication number: 20130162173
    Abstract: Methods for manufacturing a light source circuit board having one or more light emitting components that include providing at least one circuit component on a light source circuit board, wherein the at least one circuit component has an electrical circuit constant that specifies one or more performance parameters for the light source. The methods also include measuring the electrical circuit constant of the at least one circuit component. The methods also include identifying one or more performance parameters for the light source based on the measured electrical constant.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: LUMENPULSE LIGHTING INC.
    Inventors: Dale Reynolds, Gregory Campbell
  • Publication number: 20130163139
    Abstract: A semiconductor die includes a substrate comprising a first layer of a first wide band gap semiconductor material having a first conductivity, a second layer of a second wide band gap semiconductor material having a second conductivity different from the first conductivity, in electrical contact with the first layer, a third layer of a third wide band gap semiconductor material having a third conductivity different from the first conductivity and second conductivity, in electrical contact with the second layer, a fourth layer of a fourth wide band gap semiconductor material having the second conductivity, in electrical contact with the third layer, and a fifth layer of a fifth wide band gap semiconductor material having the first conductivity and in electrical contact with the fourth layer, wherein the first layer, the second layer, the third layer, the fourth layer, and the fifth layer are sequentially arranged to form a structure.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Avinash Srikrishnan Kashyap, Stanislav Ivanovich Soloviev
  • Patent number: 8470613
    Abstract: In one embodiment, a packaging solution for an application integrated circuit (IC) and one or more other ICs is provided. The packaging solution may support both chip-on-chip packaging of the application IC (in flip-chip connection to a package substrate) and other ICs (in non-flip chip orientation), and package-on-package packaging of the application IC and the other ICs. The package substrate may include a first set of pads proximate to the application IC to support chip-on-chip connection to the other ICs. The pads may be connected to conductors that extend underneath the application IC, to connect to the application IC. A second set of pads may be connected to package pins for package-on-package solutions. If the chip-on-chip solution proves reliable, support for the package-on-package solution may be eliminated and the package substrate may be reduced in size.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 25, 2013
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Patent number: 8455269
    Abstract: In a bipolar semiconductor device such that electrons and holes are recombined in a silicon carbide epitaxial film grown from the surface of a silicon carbide single crystal substrate at the time of on-state forward bias operation; an on-state forward voltage increased in a silicon carbide bipolar semiconductor device is recovered by shrinking the stacking fault area enlarged by on-state forward bias operation. In a method of this invention, the bipolar semiconductor device in which the stacking fault area enlarged and the on-state forward voltage has been increased by on-state forward bias operation, is heated at a temperature of higher than 350° C.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: June 4, 2013
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Toshiyuki Miyanagi, Hidekazu Tsuchida, Isaho Kamata, Yoshitaka Sugawara, Koji Nakayama, Ryosuke Ishii
  • Patent number: 8455306
    Abstract: Embodiments include methods for forming an electrostatic discharge (ESD) protection device coupled across input-output (I/O) and common terminals of a core circuit, where the ESD protection device includes first and second merged bipolar transistors. A base of the first transistor serves as collector of the second transistor and the base of the second transistor serves as collector of the first transistor, the bases having, respectively, first and second widths. A first resistance is coupled between an emitter and base of the first transistor and a second resistance is coupled between an emitter and base of the second transistor. ESD trigger voltage Vt1 and holding voltage Vh can be independently optimized by choosing appropriate base widths and resistances. By increasing Vh to approximately equal Vt1, the ESD protection is more robust, especially for applications with narrow design windows, for example, with operating voltage close to the degradation voltage.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 4, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Rouying Zhan
  • Patent number: 8450121
    Abstract: A pixel includes an organic light emitting diode, a first transistor having a source coupled to a first power source, a control gate coupled to a first node, and a drain coupled to a second node, wherein the first transistor includes a floating gate and an insulating layer between the floating gate and the control gate, a second transistor having a source coupled to a data line, a drain coupled to the first node, and a gate coupled to a scan line, a third transistor having a source coupled to the second node, a drain coupled to the organic light emitting diode, and a gate coupled to one of a light emitting control line and the scan line, and a capacitor coupled between the first power source and the first node.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 28, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Kyung-hoon Chung
  • Patent number: 8445945
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 21, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 8445988
    Abstract: Disclosed is an apparatus and method for plasma processing, which facilitates to constantly control a RF voltage supplied to a substrate supporting member by precisely detecting an inductive RF voltage induced to the substrate supporting member for a plasma, the apparatus comprising: a substrate supporting member for supporting a substrate, installed in a reaction room of a processing chamber; a RF generator for supplying a RF voltage to the substrate supporting member so as to form plasma in the reaction room; and a matching device for matching impedance of the RF voltage to be supplied to the substrate supporting member from the RF generator, wherein the matching device comprises: a matching unit for matching the impedance of RF voltage; and an inductive RF detecting unit which an inductive RF detecting voltage by removing noise frequency elements except a waveform of the RF voltage from a waveform of an inductive RF voltage induced to the substrate supporting member, and supplies the detected inductive RF
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 21, 2013
    Assignee: Jusung Engineering Co., Ltd
    Inventor: Chang Kil Nam
  • Patent number: 8445906
    Abstract: A method for sorting and acquiring a semiconductor element, including: disposing a plurality of semiconductor elements in an effective section in a semiconductor substrate; disposing a standard semiconductor element outside of the effective section in the semiconductor substrate; forming a bump in each of the plurality of the semiconductor elements and in the standard semiconductor element; performing a test on the plurality of the semiconductor elements in the effective section; forming a location map using the standard semiconductor element as a base point; and picking up the semiconductor elements determined as non-defective in the test from the plurality of the semiconductor elements based on the location map.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: May 21, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yoshito Konno, Yutaka Yamada
  • Patent number: 8441044
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 14, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 8436421
    Abstract: A semiconductor device contains a first transistor including a single trench which is formed on a substrate between a source region and a drain region and a gate electrode which is formed in the single trench, a second transistor including at least two trenches which are formed on the substrate between a source region and a drain region and a gate electrode which is formed in the at least two trenches, and also contains a device isolation insulating which isolates the region in which the transistor is formed. The first transistor has first distance between the single trench and the device isolation insulating film and the second transistor has second distance between the adjoining trenches, such the first distance is less than the second distance in a gate width direction.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 7, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuhiko Sanada
  • Patent number: 8426899
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: April 23, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo
  • Patent number: 8426898
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: April 23, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James M. Bustillo
  • Patent number: 8415716
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 9, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20130084656
    Abstract: An automatic analyzer detects voltage applied across electrodes, and judges whether voltage value falls within set voltage range. When the detected voltage value is lower than minimum value of set voltage range, the analyzer calculates the deficient amount of base solution based on the detected voltage value, controls a valve to supply the deficient amount of base solution, then, performs operation control of the valve so as to keep the prescribed amount of plating solution in plating solution tank, and discharges plating solution. When the detected voltage value is higher than maximum value of set voltage range, the analyzer calculates the excess amount of base solution based on the detected voltage value, controls a valve, and supplies pure water into the tank so that the base solution concentration falls within prescribed range to dilute plating solution, then controls a valve, and discharges plating solution so as to keep prescribed amount.
    Type: Application
    Filed: July 12, 2012
    Publication date: April 4, 2013
    Applicant: Renesas Electronics Corporation
    Inventor: Taku KANAOKA
  • Patent number: 8396682
    Abstract: A semiconductor device is provided. The semiconductor device applies data applied through a bump pad on which a bump is mounted through a test pad to a test apparatus such that the reliability of the test can be improved. The amount of test pads is significantly reduced by allowing data output through bump pads to be selectively applied to a test pad. Data and signals applied from test pads are synchronized with each other and applied to bump pads during a test operation such that the reliability of the test can be improved without the need of an additional test chip.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chi-Sung Oh, Dong-Hyuk Lee, Ho-Cheol Lee, Jang-Woo Ryu, Jung-Bae Lee
  • Patent number: 8355810
    Abstract: A method and system for estimating context offsets for run-to-run control in a semiconductor fabrication facility is described. In one embodiment, contexts associated with a process are identified. The process has one or more threads, and each thread involves one or more contexts. A set of input-output equations describing the process is defined. Each input-output equation corresponds to a thread and includes a thread offset expressed as a summation of individual context offsets. A state-space model is created that describes an evolution of the process using the set of input-output equations. The state-space model allows to estimate individual context offsets.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: January 15, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Jianping Zou
  • Publication number: 20130011938
    Abstract: A method for manufacturing TSVs, wherein the method comprises several steps as follows: A stack structure having a substrate and an ILD layer (inter layer dielectric layer) is provided, in which an opening penetrating through the ILD layer and further extending into the substrate is formed. After an insulator layer and a metal barrier layer are formed on the stack structure and the sidewalls of the opening, a top metal layer is then formed on the stack structure to fulfill the opening. A first planarization process stopping on the barrier layer is conducted to remove a portion of the top metal layer. A second planarization process stopping on the ILD layer is subsequently conducted to remove a portion of the metal barrier layer, a portion of the insulator layer and a portion of the top metal layer, wherein the second planarization process has a polishing endpoint determined by a light interferometry or a motor current.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Che TSAO, Chia-Lin Hsu, Jen-Chieh Lin, Teng-Chun Tsai, Hsin-Kuo Hsu, Ya-Hsueh Hsieh, Ren-Peng Huang, Chih-Hsien Chen, Wen-Chin Lin, Yung-Lun Hsieh
  • Patent number: 8349623
    Abstract: A method for manufacturing a thin film photoelectric conversion module comprising the steps of: (A) forming a plurality of divided strings by dividing a string, in which thin film photoelectric conversion elements provided by sequentially laminating a first electrode layer, a photoelectric conversion layer and a second electrode layer on the surface of an insulating substrate are electrically connected in series, into a plurality of strings by dividing grooves, electrically insulating and separating the first electrode layer and the second electrode layer one from the other and extending in a serial connection direction; and (B) performing reverse biasing by applying a reverse bias voltage to each of thin film photoelectric conversion elements of the divided string.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: January 8, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinsuke Tachibana, Takanori Nakano
  • Patent number: 8349625
    Abstract: In one embodiment, a method of sensing a high voltage element includes forming a sense element overlying a semiconductor substrate and configuring the sense element to receive a high voltage having a value that is greater than approximately five volts and responsively form a sense signal having a value that is representative of the value of the high voltage and varies in a continuous manner over an operating range of the high voltage. In one embodiment, the sense signal may be used for one of detecting a line under-voltage condition, detecting a line over-voltage condition, determining input power, limiting input power, power limiting, controlling standby operation, a line feed-forward function for current mode ramp compensation, regulating an output voltage, or detecting an energy transfer state of an energy storage element.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 8, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Jefferson W. Hall, Mohammed Tanvir Quddus
  • Patent number: 8349167
    Abstract: Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 8, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz
  • Publication number: 20120329179
    Abstract: According to one exemplary embodiment, a method for adjusting geometry of a capacitor includes fabricating a first composite capacitor residing in a first standard cell with a first set of process parameters. The method further includes using a second standard cell having substantially same dimensions as the first standard cell. The method further includes using a capacitance value from the first composite capacitor to adjust a geometry of a second composite capacitor residing in the second standard cell, wherein the second composite capacitor is fabricated with a second set of process parameters. The geometry of the second composite capacitor can be adjusted to cause the second composite capacitor to have a capacitance value substantially equal to the capacitance value from the first composite capacitor.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 27, 2012
    Inventors: Peter Huang, Ming-Chun Chen
  • Publication number: 20120313125
    Abstract: Various embodiments of light emitting devices with efficient wavelength conversion and associated methods of manufacturing are described herein. In one embodiment, a light emitting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The active region is configured to produce a light via electroluminescence. The light emitting device also includes a conversion material on the second semiconductor material, the conversion material containing aluminum gallium indium phosphide (AlGaInP) doped with an N-type dopant.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Publication number: 20120315711
    Abstract: According to one exemplary embodiment, a method for adjusting geometry of a capacitor includes fabricating a first composite capacitor residing in a first standard cell with a first set of process parameters. The method further includes using a second standard cell having substantially same dimensions as the first standard cell. The method further includes using a capacitance value from the first composite capacitor to adjust a geometry of a second composite capacitor residing in the second standard cell, wherein the second composite capacitor is fabricated with a second set of process parameters. The geometry of the second composite capacitor can be adjusted to cause the second composite capacitor to have a capacitance value substantially equal to the capacitance value from the first composite capacitor.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Inventors: Peter Huang, Ming-Chun Chen
  • Patent number: 8330472
    Abstract: A device for detecting electrical properties of a sample of an excitable material, in particular of a silicon wafer, comprises a microwave source for generating a microwave field, a resonance system which is coupled to the microwave source in a microwave-transmitting manner, the resonance system comprising a microwave resonator with at least one opening and a sample to be examined which is arranged next to the at least one opening, at least one excitation source which is arranged in the surroundings of the sample for controlled electrical excitation of the sample, and a measuring device for measuring at least one physical parameter of the resonance system.
    Type: Grant
    Filed: October 13, 2007
    Date of Patent: December 11, 2012
    Assignee: Deutsche Solar GmbH
    Inventors: Jürgen Niklas, Kay Dornich, Gunter Erfurt
  • Patent number: 8329054
    Abstract: A plasma processing apparatus includes a plasma-generation high-frequency power supply which generates plasma in a processing chamber, a biasing high-frequency power supply which applies high-frequency bias electric power to an electrode on which a sample is placed, a monitor which monitors a peak-to-peak value of the high-frequency bias electric power applied to the electrode, an electrostatic chuck power supply which makes the electrode electrostatically attract the sample, a self-bias voltage calculating unit which calculates self-bias voltage of the sample by monitoring the peak-to-peak value of the high-frequency bias electric power applied to the electrode, and an output voltage control unit which controls output voltage of the electrostatic chuck power supply based on the calculated self-bias voltage.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: December 11, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takamasa Ichino, Ryoji Nishio, Shinji Obama
  • Patent number: 8329479
    Abstract: An information managing method for managing information, based upon an electronic message containing apparatus information or event information transmitted from a substrate processing apparatus, comprises: storing the apparatus information of the substrate processing apparatus at the transmission time of the electronic message containing the apparatus information in a first apparatus information storage unit; when the electronic message containing the event information is transmitted, comparing conditions for accumulating the event information and the apparatus information; and when the conditions coincide with each other, storing the apparatus information in a second apparatus information storage unit in association with time when the event information has been generated.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: December 11, 2012
    Assignee: Hitachi Kokusai Electrical Inc.
    Inventors: Kazuhide Asai, Hiroyuki Iwakura, Toshiro Koshimaki, Kayoko Yashiki
  • Publication number: 20120309117
    Abstract: A method for manufacturing a semiconductor device wherein a semiconductor element is sealed with mold resin, a MOS structure is on an upper side of the semiconductor chip, and a PN junction region is on a back side of the semiconductor chip, comprises: obtaining an in-plane distribution of impurity concentration of the PN junction region in the semiconductor chip before encapsulation so that an in-plane distribution of breakdown voltage and leakage current of the semiconductor chip become uniform after encapsulation; forming the PN junction region having the obtained in-plane distribution of impurity concentration on the back side of the semiconductor chip; and sealing the semiconductor chip with the resin after forming the PN junction region.
    Type: Application
    Filed: January 26, 2012
    Publication date: December 6, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yuichiro SUZUKI, Atsushi Narazaki, Yoshiaki Terasaki
  • Patent number: 8323991
    Abstract: A device and method are provided for detecting stress migration properties of a semiconductor module mounted in a housing. A stress migration test (SMT) structure is formed in the semiconductor module. An integrated heating (IH) device is formed within or in direct proximity to the SMT structure. The SMT structure includes a first interconnect region in a first interconnect layer, a second interconnect region in a second interconnect layer, and a connecting region electrically connecting the interconnect regions through a first insulating layer. The IH device includes a heating interconnect region through which a heating current flows. The heating interconnect region is within or outside the first or second interconnect region or connecting region. When the heating current is applied, a measurement voltage is applied to the SMT structure, and a current through the SMT structure is measured to detect stress migration properties of the semiconductor module.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 4, 2012
    Assignee: Infineon Technologies AG
    Inventors: Armin Fischer, Alexander Von Glasow, Jochen Von Hagen
  • Patent number: 8306757
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James M. Bustillo
  • Publication number: 20120276662
    Abstract: A method of chemical mechanical polishing a substrate includes polishing a plurality of discrete separated metal features of a layer on the substrate at a polishing station, using an eddy current monitoring system to monitor thickness of the metal features in the layer, and controlling pressures applied by a carrier head to the substrate during polishing of the layer at the polishing station based on thickness measurements of the metal features from the eddy current monitoring system to reduce differences between an expected thickness profile of the metal feature and a target profile.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Inventors: Hassan G. Iravani, Kun Xu, Boguslaw A. Swedek, Ingemar Carlsson, Shih-Haur Shen, Wen-Chiang Tu, David Maxwell Gage
  • Publication number: 20120276661
    Abstract: A method of chemical mechanical polishing a substrate includes polishing a metal layer on the substrate at a polishing station, monitoring thickness of the metal layer during polishing at the polishing station with an eddy current monitoring system, and controlling pressures applied by a carrier head to the substrate during polishing of the metal layer at the polishing station based on thickness measurements of the metal layer from the eddy current monitoring system to reduce differences between an expected thickness profile of the metal layer and a target profile, wherein the metal layer has a resistivity greater than 700 ohm Angstroms.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Inventors: Hassan G. Iravani, Kun Xu, Boguslaw A. Swedek, Ingemar Carlsson, Shih-Haur Shen, Wen-Chiang Tu