Patents Represented by Attorney Wells St. John P.S.
  • Patent number: 8084355
    Abstract: A method of forming copper-comprising conductive lines in the fabrication of integrated circuitry includes depositing damascene material over a substrate. Line trenches are formed into the damascene material. Copper-comprising material is electrochemically deposited over the damascene material. The copper-comprising material is removed and the damascene material is exposed, and individual copper-comprising conductive lines are formed within individual of the line trenches. The damascene material is removed selectively relative to the conductive copper-comprising material. Dielectric material is deposited laterally between adjacent of the individual copper-comprising conductive lines. The deposited dielectric material is received against sidewalls of the individual copper-comprising conductive lines. A void is received laterally between immediately adjacent of the individual copper-comprising conductive lines within the deposited dielectric material. Other embodiments are contemplated.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Zailong Bian
  • Patent number: 8084345
    Abstract: Some embodiments include methods of forming dispersions of nanoparticles. The nanoparticles are incorporated into first coordination complexes in which the nanoparticles are coordinated to hydrophobic ligands, and the first coordination complexes are dispersed within a non-polar solvent. While the first coordination complexes are within the non-polar solvent, the ligands are reacted with one or more reactants to convert the first coordination complexes into second coordination complexes that contain hydrophilic ligands. The second coordination complexes are then extracted from the non-polar solvent into water, to form a mixture of the second coordination complexes and the water. In some embodiments, the mixture may be dispersed across a semiconductor substrate to form a uniform distribution of the nanoparticles across the substrate. In some embodiments, the nanoparticles may then be incorporated into flash memory devices as charge-trapping centers.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Dan Millward
  • Patent number: 8084142
    Abstract: The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu, H. Montgomery Manning
  • Patent number: 8080460
    Abstract: Some embodiments include methods of forming diodes. A stack may be formed over a first conductive material. The stack may include, in ascending order, a sacrificial material, at least one dielectric material, and a second conductive material. Spacers may be formed along opposing sidewalls of the stack, and then an entirety of the sacrificial material may be removed to leave a gap between the first conductive material and the at least one dielectric material. In some embodiments of forming diodes, a layer may be formed over a first conductive material, with the layer containing supports interspersed in sacrificial material. At least one dielectric material may be formed over the layer, and a second conductive material may be formed over the at least one dielectric material. An entirety of the sacrificial material may then be removed.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: December 20, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Bhaskar Srinivasan
  • Patent number: 8080817
    Abstract: In some embodiments, a memory cell includes a transistor gate spaced from a channel region by gate dielectric; a source region on one side of the channel region; and a drain region on an opposing side of the channel region from the source region. The channel region has phase change material adjacent the drain region. In some embodiments, the phase change material may be adjacent both the source region and the drain region. Some embodiments include methods of programming a memory cell that has phase change material adjacent a drain region. An inversion layer is formed within the channel region adjacent the gate dielectric, with the inversion layer having a pinch-off region within the phase change material adjacent the drain region. Hot carriers (for instance, electrons) within the pinch-off region are utilized to change a phase within the phase change material.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: December 20, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8080837
    Abstract: A memory device includes an array of memory cells and peripheral devices. At least some of the individual memory cells include carbonated portions that contain SiC. At least some of the peripheral devices do not include any carbonated portions. A transistor includes a first source/drain, a second source/drain, a channel including a carbonated portion of a semiconductive substrate that contains SiC between the first and second sources/drains and a gate operationally associated with opposing sides of the channel.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: December 20, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8074913
    Abstract: A combination thermoforming trim press and comminuting apparatus is provided. The combination includes a horizontal trim press, a comminuting apparatus, and a height-adjustable delivery chute. The trim press has an exit for downwardly delivering a scrap web of thermoformable sheet material. The comminuting apparatus is provided beneath the exit and has an entrance for receiving the scrap web. The height-adjustable delivery chute is provided between the trim press exit and the comminuting apparatus entrance and includes a first section, a second section telescopically received relative to the first section to provide height adjustment, and a fastener for securing the chute at a selected height to substantially close any gaps between the trim press exit, the comminuting apparatus entrance and the delivery chute to eliminate any need for a shielding cage to prevent internal finger and limb access by an operator.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 13, 2011
    Inventor: Jere F. Irwin
  • Patent number: 8074353
    Abstract: The invention includes methods of utilizing removable mechanical precising mechanisms and/or optical-based precising mechanisms to align chips within sockets. The sockets can be configured so that compression of the sockets opens a clamping mechanism. A chip can be placed within a socket with a manipulator and aligned during compression of the socket. Subsequently, the compression of the socket can be released while the manipulator remains in contact with the chip to hold the chip in place until the clamping mechanism is retaining the chip in the socket. The chip can then be released from the manipulator. The invention also includes systems for utilizing removable nests to align various chip geometries within generic socket designs.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Daniel P. Cram, A. Jay Stutzman
  • Patent number: 8076248
    Abstract: The invention includes methods for selectively etching insulative material supports relative to conductive material. The invention can include methods for selectively etching silicon nitride relative to metal nitride. The metal nitride can be in the form of containers over a semiconductor substrate, with such containers having upwardly-extending openings with lateral widths of less than or equal to about 4000 angstroms; and the silicon nitride can be in the form of a layer extending between the containers. The selective etching can comprise exposure of at least some of the silicon nitride and the containers to Cl2 to remove the exposed silicon nitride, while not removing at least the majority of the metal nitride from the containers. In subsequent processing, the containers can be incorporated into capacitors.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kevin R. Shea, Thomas M. Graettinger
  • Patent number: 8076760
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 8078018
    Abstract: Some embodiments include communication methods, methods of forming an interconnect, signal interconnects, integrated circuit structures, circuits, and data apparatuses. In one embodiment, a communication method includes accessing an optical signal comprising photons to communicate information, accessing an electrical signal comprising electrical data carriers to communicate information, and using a single interconnect, communicating the optical and electrical signals between a first spatial location and a second spatial location spaced from the first spatial location.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8076673
    Abstract: A recessed dielectric antifuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A recess is formed between the source and drain regions. A gate and gate oxide are formed in the recess and lightly doped source and drain extension regions contiguous with the laterally spaced source and drain regions are optionally formed adjacent the recess. Programming of the recessed dielectric antifuse is performed by application of power to the gate and at least one of the source region and the drain region to breakdown the dielectric, which minimizes resistance between the gate and the channel.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Dwayne Kreipl
  • Patent number: 8073573
    Abstract: Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: December 6, 2011
    Assignee: Battelle Memorial Institute
    Inventors: David P. Chassin, Matthew K. Donnelly, Jeffery E. Dagle
  • Patent number: 8071441
    Abstract: Some embodiments include methods of forming transistor gates. A gate stack is placed within a reaction chamber and subjected to at least two etches, and to one or more depositions to form a transistor gate. The transistor gate may comprise at least one electrically conductive layer over a semiconductor material-containing layer. At least one of the one or more depositions may form protective material. The protective material may extend entirely across the at least one electrically conductive layer, and only partially across the semiconductor material-containing layer to leave unlined portions of the semiconductor material-containing layer. The unlined portions of the semiconductor material-containing layer may be subsequently oxidized.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 6, 2011
    Assignee: Micron Technology, Inc
    Inventor: David J. Keller
  • Patent number: 8071467
    Abstract: Some embodiments include methods of forming patterns in substrates by utilizing block copolymer assemblies as patterning materials. A block copolymer assembly may be formed over a substrate, with the assembly having first and second subunits arranged in a pattern of two or more domains. Metal may be selectively coupled to the first subunits relative to the second subunits to form a pattern of metal-containing regions and non-metal-containing regions. At least some of the block copolymer may be removed to form a patterned mask corresponding to the metal-containing regions. A pattern defined by the patterned mask may be transferred into the substrate with one or more etches. In some embodiments, the patterning may be utilized to form integrated circuitry, such as, for example, gatelines.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: December 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Scott Sills
  • Patent number: 8067286
    Abstract: The invention includes methods of forming recessed access devices. A substrate is provided to have recessed access device trenches therein. A pair of the recessed access device trenches are adjacent one another. Electrically conductive material is formed within the recessed access device trenches, and source/drain regions are formed proximate the electrically conductive material. The electrically conductive material and source/drain regions together are incorporated into a pair of adjacent recessed access devices. After the recessed access device trenches are formed within the substrate, an isolation region trench is formed between the adjacent recessed access devices and filled with electrically insulative material to form a trenched isolation region.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: November 29, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, Suraj J. Mathew, Jigish D. Trivedi, John K. Zahurak, Sanh D. Tang
  • Patent number: 8069383
    Abstract: An apparatus, system, and method are disclosed for bad block remapping. A bad block identifier module identifies one or more data blocks on a solid-state storage element as bad blocks. A log update module writes at least a location of each bad block identified by the bad block identifier module into each of two or more redundant bad block logs. A bad block mapping module accesses at least one bad block log during a start-up operation to create in memory a bad block map. The bad block map includes a mapping between the bad block locations in the bad block log and a corresponding location of a replacement block for each bad block location. Data is stored in each replacement block instead of the corresponding bad block. The bad block mapping module creates the bad block map using one of a replacement block location and a bad block mapping algorithm.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 29, 2011
    Assignee: Fusion-IO, Inc.
    Inventors: David Flynn, John Strasser, Jonathan Thatcher, David Atkisson, Michael Zappe, Joshua Aune, Kevin Vigor
  • Patent number: 8062969
    Abstract: The invention includes methods of electroless plating of nickel selectively on exposed conductive surfaces relative to exposed insulative surfaces. The electroless plating can utilize a bath which contains triethanolamine, maleic anhydride and at least one nickel salt.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: November 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Tiwari
  • Patent number: 8057686
    Abstract: A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 8058716
    Abstract: An IC device includes a die and a first package interposer stacked over a second package interposer. The IC device includes a first conductive connection from a first bond pad of the die directly to a bond pad of the first interposer and a second conductive connection from a second bond pad of the die directly to a bond pad of the second interposer. Another IC device includes a second die stacked over a separate first die and a first package interposer stacked over a separate second package interposer. The first die is stacked over the first interposer. A first conductive connection exists from a bond pad of the first die directly to a bond pad of the first interposer and a second conductive connection exists from a bond pad of the second die directly to a bond pad of the second interposer.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Chew Beng Chye, Tan Kian Shing Michael, Tan Hock Chuan, Neo Chee Peng