Abstract: A block copolymer comprising a fluorinated block and a non-fluorinated block and method of making the block copolymer are provided. Also provided herein are a coating on an implantable device comprising the block copolymer and method of using the implantable device.
Abstract: A coating for a medical device, particularly for a drug eluting stent, is described. The coating can include a polymer having in a dry state a glass transition temperature within a range of between about 20° C. and about 55° C.
Type:
Grant
Filed:
July 15, 2003
Date of Patent:
January 25, 2011
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Wouter E. Roorda, Ni Ding, Stephen D. Pacetti
Abstract: The present invention relates to a stent fabricated of or coated with a composition comprising a biodegradable hydrophobic polymer containing water-labile bonds such that a device fabricated of the composition or the surface of a device coated with the requisite mechanical characteristics required of a stent and the polymer erodes from its outer surface inward.
Abstract: Methods and devices relating to polymer-bioceramic composite implantable medical devices are disclosed. The bioceramic comprises calcium sulfate.
Abstract: A system, nozzle assembly, and method for coating a stent with a solvent and polymer are provided. The polymer can include a therapeutic substance or a drug. The polymer and solvent can be discharged from separate tubes disposed within another tube carrying moving air. The polymer and the solvent mix together when they are discharged and are atomized by the air. The ends of the tubes can be concentric with each other.
Abstract: A method of manufacturing an implantable medical device, such as a drug eluting stent, is disclosed. The method includes subjecting an implantable medical device that includes a polymer to a thermal condition. The thermal condition can result in reduction of the rate of release of an active agent from the device subsequent to the implantation of the device and/or improve the mechanical properties of a polymeric coating on the device.
Type:
Application
Filed:
September 16, 2010
Publication date:
January 13, 2011
Applicant:
ADVANCED CARDIOVASCULAR SYSTEMS, INC.
Inventors:
Syed F.A. Hossainy, Yiwen Tang, Manish Gada
Abstract: A method of manufacturing a drug-delivery coating for a stent is disclosed. The method comprises covering the outer surface of the stent; applying a first composition to the inner surface of the stent to form a first coating; covering the first coating on the inner surface of the stent; and applying a second composition to the outer surface of the stent to form a second coating.
Type:
Grant
Filed:
October 23, 2009
Date of Patent:
January 11, 2011
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Evgenia Mandrusov, Paul Consigny, Syed Hossainy, Dary Mirzaee
Abstract: A catheter assembly is provided having an inner member and an outer member extending along a longitudinal axis, the inner member and the outer member having a coaxial configuration and dimensioned for relative axial movement. The outer member may include an anti rotation member adapted to engage with a longitudinal slot formed on the inner member so as to maintain rotational alignment between inner member and outer member. The inner member can be made with a proximal portion made from a tubing such as hypotubing or a coil tubing. The inner member also may be made with a proximal portion made with a support mandrel. A coil tubing can be utilized to form the guide wire receiving member which is attached to the inner member.
Type:
Grant
Filed:
November 20, 2003
Date of Patent:
January 11, 2011
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Timothy A. Geiser, Charles R. Peterson, Andy Denison, Stephanie Klocke, Samir Patel, Joanna Lubas, Joanne Lumauig, Kathy Lind, Keif Fitzgerald
Abstract: With abluminal side of a stent masked, the luminal side of the stent is selectively coated with a substance, such as an anti-coagulant, a platelet inhibitor and/or a pro-healing substance. The stent can be masked by inserting it into a rigid mandrel chamber or by compressing a masking sleeve onto the outer side of the stent. A spray nozzle inserted into the masked stent spray coats the substance onto the luminal side. The sprayed coating can be cured onto the stent such as by inserting an electrical-resistance heater bar into the stent.
Type:
Grant
Filed:
December 19, 2005
Date of Patent:
January 11, 2011
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Andrew J. Tochterman, William J. Fox, Nathan Harold
Abstract: A method of manufacturing an implantable medical device, such as a drug eluting stent, is disclosed. The method includes subjecting an implantable medical device that includes a polymer to a thermal condition. The thermal condition can result in reduction of the rate of release of an active agent from the device subsequent to the implantation of the device and/or improve the mechanical properties of a polymeric coating on the device.
Type:
Application
Filed:
September 10, 2010
Publication date:
January 6, 2011
Applicant:
ADVANCED CARDIOVASCULAR SYSTEMS, INC.
Inventors:
Syed F. A. Hossainy, Yiwen Tang, Manish Gada
Abstract: A method of manufacturing an implantable medical device, such as a drug eluting stent, is disclosed. The method includes subjecting an implantable medical device that includes a polymer to a thermal condition. The thermal condition can result in reduction of the rate of release of an active agent from the device subsequent to the implantation of the device and/or improve the mechanical properties of a polymeric coating on the device.
Type:
Application
Filed:
September 15, 2010
Publication date:
January 6, 2011
Applicant:
ADVANCED CARDIOVASCULAR SYSTEMS, INC.
Inventors:
Syed F. A. Hossainy, Yiwen Tang, Manish Gada
Abstract: A radiation delivery source, such as a stent, and method for making radioactive a delivery source are disclosed. A drug delivery source and method for making a drug delivery region on the drug delivery source are also disclosed.
Abstract: Thermal spray processing and cold spray processing are utilized to manufacture porous starting materials (such as tube stock, wire and substrate sheets) from biocompatible metals, metal alloys, ceramics and polymers that may be further processed into porous medical devices, such as stents. The spray processes are also used to form porous coatings on consolidated biocompatible medical devices. The porous substrates and coatings may be used as a reservoir to hold a drug or therapeutic agent for elution in the body. The spray-formed porous substrates and coatings may be functionally graded to allow direct control of drug elution without an additional polymer topcoat. The spray processes are also used to apply the drug or agent to the porous substrate or coating when drug or agent is robust enough to withstand the temperatures and velocities of the spray process with minimal degradation.
Abstract: A method including positioning a delivery device at a location in a vessel within a mammalian body, introducing a first treatment agent including a cellular component through the delivery device, and introducing a different second treatment agent disposed in a carrier through the delivery device. A method including identifying an infarct region within myocardial tissue and a border region of perfused tissue adjacent the infarct region, introducing a treatment agent including a cellular component to the border region, and introducing a plurality of microparticles to the infarct region. A kit including a treatment agent including a cellular component in a form suitable for percutaneous delivery, and a separate amount of a plurality of microparticles in a form suitable for percutaneous delivery.
Type:
Grant
Filed:
December 17, 2004
Date of Patent:
December 21, 2010
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Evgenia Mandrusov, Charles Claude, Eugene T. Michal
Abstract: Materials having barrier characteristics are used with a balloon of a catheter assembly and a sheath for covering the balloon. The barrier materials prevent significant absorption of therapeutic substances used in association with the balloon, for example via a medicated prosthesis, into the balloon wall or the sheath. Accordingly the quantity and concentration of the therapeutic substances are preserved. Materials which can serve as a barrier include barrier polymers, polymers with additive fillers, polymers with a metallic coating, metallic films, polymers with a main group element oxide coating, and sulfonated or fluorinated polymers. For the sheath, materials such as glass and metals also function effectively.
Abstract: A method including introducing a treatment device via a transluminal route within a blood vessel to a treatment site including a vulnerable plaque; and dispensing a treatment agent including a compound having a property that tends to modify a property of a content of the vulnerable plaque. A kit including a first treatment agent including a property capable of modifying a property of a content of a vulnerable plaque; and a different second treatment agent. A composition including a treatment agent capable of modifying the mobility of a content of a vulnerable plaque in a form and concentration suitable for dispensing through a catheter into a blood vessel.
Abstract: A filtering device for capturing and removing embolic debris from a body vessel and a system for insertion and removal of the filtering device to facilitate an interventional procedure in a stenosed or occluded region of a body vessel. The filtering device is adapted to be expandable in the body vessel, allowing blood to pass therethrough while maintaining apposition with the body vessel wall and capturing embolic material released into the bloodstream during the interventional procedure, and to be collapsible to remove the captured embolic material from the body vessel. The filtering device includes a guidewire, an expandable cage assembly secured to the guide wire, filter material secured to the expandable cage assembly, and at least one hinge, the hinge allowing the expandable cage assembly to bend independent from the guide wire.
Type:
Grant
Filed:
August 1, 2006
Date of Patent:
November 30, 2010
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Benjamin C. Huter, Kevin M. Magrini, John E. Papp