Patents Assigned to Advanced Micro Devices
  • Publication number: 20120198458
    Abstract: Embodiments of the present invention provide a method of synchronous operation of a first processing device and a second processing device. The method includes executing a process on the first processing device, responsive to a determination that execution of the process on the first device has reached a serial-parallel boundary, passing an execution thread of the process from the first processing device to the second processing device, and executing the process on the second processing device.
    Type: Application
    Filed: November 30, 2011
    Publication date: August 2, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Robert Scott Hartog, Ralph Clay Taylor, Michael Mantor, Sebastien Nussbaum, Rex McCrary, Mark Leather, Nuwan S. Jayasena, Kevin McGrath, Philip j. Rogers, Thomas Woller
  • Publication number: 20120194524
    Abstract: Methods, systems, and computer readable media embodiments are disclosed for preemptive context-switching of processes running on a accelerated processing device. Embodiments include, detecting by an accelerated processing device a memory exception, and preempting a process from running on the accelerated processing device based upon the detected exception.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 2, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Robert Scott Hartog, Ralph Clay Taylor, Michael Mantor, Kevin McGrath, Sebastien Nussbaum, Nuwan Jayasena, Rex McCrary, Mark Leather, Philip J. Rogers, Thomas R. Woller
  • Publication number: 20120194527
    Abstract: Embodiments described herein provide a method of arbitrating a processing resource. The method includes receiving a command to preempt a task and preventing additional wavefronts associated with the task from being processed.
    Type: Application
    Filed: November 30, 2011
    Publication date: August 2, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Robert Scott Hartog, Ralph Clay Taylor, Michael Mantor, Sebastien Nussbaum, Rex McCrary, Mark Leather, Philip J. Rogers, Thomas R. Woller
  • Publication number: 20120194525
    Abstract: Provided herein is a method including receiving a run list including one or more processes to run on an accelerated processing device, wherein each of the one or more processes is associated with a corresponding independent job command queue. The method also includes scheduling each of the one or more processes to run on the accelerated processing device based on a criteria associated with each process.
    Type: Application
    Filed: November 23, 2011
    Publication date: August 2, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Robert Scott Hartog, Ralph Clay Taylor, Michael Mantor, Thomas R. Woller, Kevin McGrath, Sebastien Nussbaum, Nuwan Jayasena, Rex McCrary, Philip J. Rogers, Mark Leather
  • Patent number: 8233006
    Abstract: Embodiments include a texture mapping processor incorporating a dynamic level of detail map for use in a graphics processing system. Level of detail values are defined, with 0 being the finest and corresponding to the largest mipmap level. Each bound texture in a graphics object is assigned an identifier. This identifier is used as an index into a minimum-LOD value tracking table that is updated whenever a texel is fetched. A texture processing module controls when the tracking table is initialized and read back, and which identifiers are tracked. The minimum-LOD values in the tracking table are accompanied by a coarse region access mask to associate a minimum LOD value with a specific region of the image or object. A clamping table contains LOD clamp values for each region and a region code that specifies the coarseness of the LOD associated with each region of the texture.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: July 31, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark S. Grossman, Thomas Frisinger, Daniel M. Gessel
  • Patent number: 8232200
    Abstract: Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: July 31, 2012
    Assignees: International Business Machines Corporation, Samsung Electronics Co., Ltd., Advanced Micro Devices, Inc., Infineon Technologies AG
    Inventors: Hyeok-Sang Oh, Woo-Jin Jang, Bum-Ki Moon, Ji-Hong Choi, Minseok Oh, Tien-Jen Cheng
  • Patent number: 8233527
    Abstract: Embodiments of the invention as described herein provide a solution to the problems of conventional methods as stated above. In the following description, various examples are given for illustration, but none are intended to be limiting. Embodiments are directed to a transcoding system that shares the workload of video transcoding through the use of multiple central processing unit (CPU) cores and/or one or more graphical processing units (GPU), including the use of two components within the GPU: a dedicated hardcoded or programmable video decoder for the decode step and compute shaders for scaling and encoding. The system combines usage of an industry standard Microsoft DXVA method for using the GPU to accelerate video decode with a GPU encoding scheme, along with an intermediate step of scaling the video.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: July 31, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael L. Schmit, Rajy Meeyakhan Rawther
  • Patent number: 8234432
    Abstract: In an embodiment, a system comprises a memory system configured to store a data structure. The data structure stores at least an interrupt request state for each destination in each of a plurality of guests executable on the system. The interrupt request state identifies which interrupts have been requested at the corresponding interrupt controller in the corresponding guest of the plurality of guests. A guest interrupt manager is coupled to receive an interrupt message targeted at a first destination in a first guest of the plurality of guests, and the guest interrupt manager is configured to update the interrupt request state in the data structure that corresponds to the first destination and the first guest.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 31, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Benjamin C. Serebrin
  • Patent number: 8232138
    Abstract: Various embodiments of a semiconductor chip device that include a circuit board and a stiffener frame and methods of fabricating the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a circuit board and coupling a stiffener frame to the circuit board. The stiffener frame includes a first opening that defines an interior wall. The interior wall includes a notch.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 31, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kevin W. Lim, Seah S. Too, Mohammad Z. Khan
  • Patent number: 8234429
    Abstract: In one embodiment, an interrupt acceptance control circuit is provided. The interrupt acceptance control circuit may monitor one or more guest interrupt controllers in a system in response to an IPI (or device interrupt) issued in a guest, to determine if each targeted vCPU in the guest has accepted the interrupt. If not, the interrupt acceptance control circuit may communicate the lack of acceptance to the VMM, in one embodiment. The VMM may attempt to schedule the vCPUs that have not accepted the interrupt, for example.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: July 31, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Benjamin C. Serebrin
  • Publication number: 20120188259
    Abstract: Embodiments described herein provide a method including receiving a command to schedule a first process and selecting a command queue associated with the first process. The method also includes scheduling the first process to run on an accelerated processing device and preempting a second process running on the accelerated processing device to allow the first process to run on the accelerated processing device.
    Type: Application
    Filed: November 23, 2011
    Publication date: July 26, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Robert Scott Hartog, Ralph Clay Taylor, Michael Mantor, Thomas Woller, Kevin McGrath, Sebastien Nussbaum, Nuwan Jayasena, Rex McCrary, Philip Rogers, Mark Leather
  • Publication number: 20120188258
    Abstract: A method, system, and computer program product are disclosed for providing improved access to accelerated processing device compute resources to user mode applications. The functionality disclosed allows user mode applications to provide commands to an accelerated processing device without the need for kernel mode transitions in order to access a unified ring buffer. Instead, applications are each provided with their own buffers, which the accelerated processing device hardware can access to process commands. With full operating system support, user mode applications are able to utilize the accelerated processing device in much the same way as a CPU.
    Type: Application
    Filed: November 4, 2011
    Publication date: July 26, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Rex MCCRARY, Michael Houston, Philip J. Rogers, Gongxian Jeffrey Cheng, Mark Hummel, Paul Blinzer
  • Publication number: 20120187991
    Abstract: A clock frequency of a clock signal used by a processor may be temporarily reduced to compensate for voltage droops in the power supply to the processor. A device may include a multiplexer to receive a group of phase shifted versions of the clock signal and to output one of the group of phase shifted versions of the clock signal as an output clock signal. A control component may receive the output clock signal from the multiplexer and a voltage droop event signal indicating whether a voltage droop event is occurring in a power supply. The control component may control, in response to the voltage droop event signal indicating the occurrence of the voltage droop event, the multiplexer to iteratively select the group of phase shifted versions of the clock signal to reduce the frequency of the output clock signal.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Visvesh SATHE, Samuel NAFFZIGER, Sanjay PANT
  • Patent number: 8227266
    Abstract: By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: July 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Anthony Mowry, Casey Scott, Vassilios Papageorgiou, Andy Wei, Markus Lenski, Andreas Gehring
  • Patent number: 8227846
    Abstract: A decoupling capacitor includes a pair of MOS capacitors formed in wells of opposite plurality. Each MOS capacitor has a set of well-ties and a high-dose implant, allowing high frequency performance under accumulation or depletion biasing. The top conductor of each MOS capacitor is electrically coupled to the well-ties of the other MOS capacitor and biased consistently with logic transistor wells. The well-ties and/or the high-dose implants of the MOS capacitors exhibit asymmetry with respect to their dopant polarities.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Andrew E. Carlson
  • Patent number: 8222680
    Abstract: A double gate metal-oxide semiconductor field-effect transistor (MOSFET) includes a fin, a first gate and a second gate. The first gate is formed on top of the fin. The second gate surrounds the fin and the first gate. In another implementation, a triple gate MOSFET includes a fin, a first gate, a second gate, and a third gate. The first gate is formed on top of the fin. The second gate is formed adjacent the fin. The third gate is formed adjacent the fin and opposite the second gate.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: July 17, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ming-Ren Lin, Judy Xilin An, Zoran Krivokapic, Cyrus E. Tabery, Haihong Wang, Bin Yu
  • Publication number: 20120179851
    Abstract: A system, method and article of manufacture for an accelerated processing device (APD) to request a central processing unit (CPU) to process a task, comprising enqueuing a plurality of tasks on a queue using the APD, generating a user-level interrupt and transmitting to the CPU the plurality of tasks in the queue using an interrupt handler associated with a CPU thread.
    Type: Application
    Filed: November 9, 2011
    Publication date: July 12, 2012
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Benjamin Thomas SANDER, Michael Houston, Newton Cheung, Keith Lowery
  • Patent number: 8217813
    Abstract: A compression technique includes storing respective fixed-size symbols for each of a plurality of words in a data block, e.g., a cache line, into a symbol portion of a compressed data block, e.g., a compressed cache line, where each of the symbols provides information about a corresponding one of the words in the data block. Up to a first plurality of data segments are stored in a data portion of the compressed data block, each data segment corresponds to a unique one of the symbols in the compressed data block and a unique one of the words in the cache line. Up to a second plurality of dictionary entries are stored in the data portion of the compressed cache line. The dictionary entries can correspond to multiple ones of the symbols.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 10, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: James Michael O'Connor
  • Patent number: 8217472
    Abstract: A method of manufacturing a semiconductor device is provided herein, where the width effect is reduced in the resulting semiconductor device. The method involves providing a substrate having semiconductor material, forming an isolation trench in the semiconductor material, and lining the isolation trench with a liner material that substantially inhibits formation of high-k material thereon. The lined trench is then filled with an insulating material. Thereafter, a layer of high-k gate material is formed over at least a portion of the insulating material and over at least a portion of the semiconductor material. The liner material divides the layer of high-k gate material, which prevents the migration of oxygen over the active region of the semiconductor material.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 10, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard J. Carter, George J. Kluth, Michael J. Hargrove
  • Patent number: 8216887
    Abstract: Various semiconductor chip packages and methods of assembling and making the same are disclosed. In one aspect, a method of manufacturing is provided that includes coupling a stiffener frame to a first side of a substrate. The stiffener frame has a central opening to accommodate a semiconductor chip and an outer edge surface. A semiconductor chip is coupled to the first side in the opening. A lid is coupled to the stiffener frame with an adhesive. The lid has a first edge surface set back from the outer edge surface of the stiffener frame. The adhesive is set back from the outer edge surface of the stiffener frame.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 10, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Stephen F. Heng, Sanjay Dandia, Chia-Ken Leong