Patents Assigned to Applied Material
  • Patent number: 10901021
    Abstract: Embodiments include systems and methods for determining a processing parameter of a processing operation. Some embodiments include a diagnostic substrate that comprises a substrate, a circuit layer over the substrate, a capping layer over the circuit layer, and a sensing region across the capping layer. In an embodiment, the sensing region comprises, an array of first micro resonators and a second micro resonator. In an embodiment, the array of first micro resonators surround the second micro resonator.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: January 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Chuang-Chia Lin, Upendra Ummethala
  • Publication number: 20210020499
    Abstract: Disclosed is a semiconductor processing approach wherein a wafer twist is employed to increase etch rate, at select locations, along a hole or space end arc. By doing so, a finished hole may more closely resemble the shape of the incoming hole end. In some embodiments, a method may include providing an elongated contact hole formed in a semiconductor device, and etching the elongated contact hole while rotating the semiconductor device, wherein the etching is performed by an ion beam delivered at a non-zero angle relative to a plane defined by the semiconductor device. The elongated contact hole may be defined by a set of sidewalls opposite one another, and a first end and a second end connected to the set of sidewalls, wherein etching the elongated contact hole causes the elongated contact hole to change from an oval shape to a rectangular shape.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 21, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Glen F.R. Gilchrist, Shurong Liang
  • Publication number: 20210017639
    Abstract: Apparatus and methods for controlling plasma profiles during PVD deposition processes are disclosed. Some embodiments utilize EM coils placed above the target to control the plasma profile during deposition.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 21, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Alexander Jansen, Keith A. Miller, Prashanth Kothnur, Martin Riker, David Gunther, Emily Schooley
  • Publication number: 20210017665
    Abstract: Cleaning substrates or electroplating system components may include methods of rinsing a substrate at a semiconductor plating chamber. The methods may include moving a head from a plating bath to a first position. The head may include a substrate coupled with the head. The methods may include rotating the head for a first period of time to sling bath fluid back into the plating bath. A residual amount of bath fluid may remain. The methods may include delivering a first fluid to the substrate from a first fluid nozzle to at least partially expel the residual amount of bath fluid back into the plating bath. The methods may include moving the head to a second position. The methods may include rotating the head for a second period of time. The methods may also include delivering a second fluid across the substrate from a second fluid nozzle.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Sam Lee, Kyle M. Hanson, Eric J. Bergman
  • Patent number: 10896833
    Abstract: A method for detecting an endpoint of a seasoning process in a process chamber includes obtaining seasoning progress data indicating a progress of the seasoning process for each substrate of a first plurality of substrates, and collecting historical parameter values from a plurality of sensors disposed in the process chamber. The historical parameter values for each substrate of the first plurality of substrates are normalized with respect to a plurality of parameter values for a particular substrate in the first plurality of substrates. An MVA model is generated by applying a set of coefficients to the normalized parameter values for each substrate of the first plurality of substrates, and the set of coefficients are regressed based on the seasoning progress data. An end point of the seasoning process is determined using the MVA model with a plurality of substantially real-time parameter values measured when performing a seasoning process over each substrate of a second plurality of substrates.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: January 19, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Subrahmanyam Venkata Rama Kommisetti, Eda Tuncel, Shayne Smith, Liming Zhang, Sathyendra Ghantasala, Ryan Patz
  • Patent number: 10896799
    Abstract: An IHC ion source with multiple configurations is disclosed. For example, an IHC ion source comprises a chamber, having at least one electrically conductive wall, and a cathode and a repeller disposed on opposite ends of the chamber. Electrodes are disposed on one or more walls of the ion source. Bias voltages are applied to at least one of the cathode, repeller and the electrodes, relative to the electrically conductive wall of the chamber. Further, the IHC ion source comprises a configuration circuit, which receives the various voltages as input voltages, and provides selected output voltages to the cathode, repeller and electrodes, based on user input. In this way, the IHC ion source can be readily reconfigured for different applications without rewiring the power supplies, as is currently done. This configuration circuit may be utilized with other types of ion sources as well.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: January 19, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Klaus Becker, Carlos M. Goulart, Daniel Alvarado, Daniel R. Tieger, Alexander S. Perel
  • Publication number: 20210013038
    Abstract: Methods of forming self-aligned patterns are described. A film material is deposited on a patterned film to fill and cover features formed by the patterned film. The film material is recessed to a level below the top of the patterned film. The recessed film is converted to a metal film by exposure to a metal precursor followed by volumetric expansion of the metal film.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Abhijit Basu Mallick, Pramit Manna, Yihong Chen, Ziqing Duan, Rui Cheng, Shishi Jiang
  • Publication number: 20210013055
    Abstract: Exemplary substrate processing systems may include a factory interface and a load lock coupled with the factory interface. The systems may include a transfer chamber coupled with the load lock. The transfer chamber may include a robot configured to retrieve substrates from the load lock. The systems may include a chamber system positioned adjacent and coupled with the transfer chamber. The chamber system may include a transfer region laterally accessible to the robot. The transfer region may include a plurality of substrate supports disposed about the transfer region. Each substrate support of the plurality of substrate supports may be vertically translatable. The transfer region may also include a transfer apparatus rotatable about a central axis and configured to engage substrates and transfer substrates among the plurality of substrate supports. The chamber system may also include a plurality of processing regions vertically offset and axially aligned with an associated substrate support.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Steve Hongkham, Charles T. Carlson, Tuan A. Nguyen, Swaminathan T. Srinivasan, Khokan Chandra Paul
  • Publication number: 20210013084
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210008727
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a transfer apparatus having a central hub including a shaft extending at a distal end through the transfer region housing into the transfer region. The transfer apparatus may include a lateral translation apparatus coupled with an exterior surface of the transfer region housing, and configured to provide at least one direction of lateral movement of the shaft. The systems may also include an end effector coupled with the shaft within the transfer region. The end effector may include a plurality of arms having a number of arms equal to a number of substrate supports of the plurality of substrate supports in the transfer region.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Paul Z. Wirth, Charles T. Carlson, Jason M. Schaller
  • Publication number: 20210013068
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210013069
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body along a first surface of the first lid plate and defining a plurality of apertures through the plate. The first lid plate may also define a recessed ledge about each aperture. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures. Each lid stack may be seated on the first lid plate on a separate recessed ledge of the first lid plate. The plurality of lid stacks may at least partially define a plurality of processing regions vertically offset from the transfer region. The systems may also include a second lid plate coupled with the plurality of lid stacks.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Viren Kalsekar, Vinay Prabhakar
  • Publication number: 20210013067
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
  • Patent number: 10889891
    Abstract: Embodiments disclosed herein include an abatement system and method for abating compounds produced in semiconductor processes. The abatement system includes a remote plasma source for generating an oxidizing plasma for treating exhaust gases from a deposition process performed in the processing chamber, the treatment assisting with the trapping particles in an exhaust cooling apparatus. The remote plasma source then generates a cleaning plasma for treating exhaust gases from a cleaning process performed in the processing chamber, the cleaning plasma reacting with the trapped particles in the exhaust cooling apparatus and cleaning the exhaust cooling apparatus.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventor: James L'Heureux
  • Patent number: 10889894
    Abstract: A faceplate for a processing chamber is disclosed. The faceplate has a body with a plurality of apertures formed therethrough. A flexure is formed in the body partially circumscribing the plurality of apertures. A cutout is formed through the body on a common radius with the flexure. One or more bores extend from a radially inner surface of the cutout to an outer surface of the body. A heater is disposed between flexure and the plurality of apertures. The flexure and the cutout are thermal chokes which limit heat transfer thereacross from the heater.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Daniel Hwung, Yuxing Zhang, Kalyanjit Ghosh, Kaushik Alayavalli, Amit Kumar Bansal
  • Patent number: 10892143
    Abstract: Implementations of the present disclosure provide methods for treating a processing chamber. In one implementation, the method includes purging a 300 mm substrate processing chamber, without the presence of a substrate, by flowing a purging gas into the substrate processing chamber at a flow rate of about 0.14 sccm/mm2 to about 0.33 sccm/mm2 and a chamber pressure of about 1 Torr to about 30 Torr, with a throttle valve of a vacuum pump system of the substrate processing chamber in a fully opened position, wherein the purging gas is chemically reactive with deposition residue on exposed surfaces of the substrate processing chamber.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Vivek Bharat Shah, Bhaskar Kumar, Anup Kumar Singh, Ganesh Balasubramanian
  • Patent number: 10892157
    Abstract: Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a carboxylic acid is exposed to a substrate to selectively form a blocking layer. In some embodiments, a hydrazide is exposed to a substrate to selectively form a blocking layer. In some embodiments, an alkyl phosphonic acid is exposed to a substrate to selectively form a blocking layer. In some embodiments, the alkyl phosphonic acid is formed in-situ and exposed to the substrate. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, Wenyi Liu
  • Patent number: 10892186
    Abstract: Methods and apparatus to fill a feature with a seamless gapfill of copper are described. A copper gapfill seed layer is deposited on a substrate surface by atomic layer deposition followed by a copper deposition by physical vapor deposition to fill the gap with copper.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ben-Li Sheu, Feng Q. Liu, Tae Hong Ha, Mei Chang, Shirish Pethe
  • Patent number: 10892161
    Abstract: Methods for depositing desired materials formed on certain locations of a substrate with desired materials using a selective deposition process for semiconductor applications are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes supplying a first gas comprising a hydroxy terminated hydrocarbon containing material to a surface of a substrate, selectively forming a passivation layer on a first material of the substrate, selectively forming self assembled monolayers on a second material of the substrate, and selectively forming a material layer on the passivation layer.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Biao Liu, Cheng Pan, Erica Chen, Srinivas D. Nemani, Chang Ke, Lei Zhou
  • Patent number: 10892147
    Abstract: Methods for matching semiconductor processing chambers using a calibrated spectrometer are disclosed. In one embodiment, plasma attributes are measured for a process in a reference chamber and a process in an aged chamber. Using a calibrated light source, an optical path equivalent to an optical path in a reference chamber and an optical path in an aged chamber can be compared by determining a correction factor. The correction factor is applied to adjust a measured intensity of plasma radiation through the optical path in the aged chamber. Comparing a measured intensity of plasma radiation in the reference chamber and the adjusted measured intensity in the aged chamber provide an indication of changed chamber conditions. A magnitude of change between the two intensities can be used to adjust the process parameters to yield a processed substrate from the aged chamber which matches that of the reference chamber.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Sairaju Tallavarjula, Kailash Pradhan, Huy Q. Nguyen, Jian Li