Abstract: Metal coordination complexes comprising at least one diazabutadiene based ligand having a structure represented by: where R1 and R4 are selected from the group consisting of C4-C10 alkyl groups; and R2 and R3 are each independently selected from the group consisting of H, C1-C6 alkyl, cycloalkyl, or aryl groups and the difference in the number of carbons in R2 and R3 is greater than or equal to 2. Processing methods using the metal coordination complexes are also described.
Type:
Application
Filed:
August 18, 2020
Publication date:
December 3, 2020
Applicant:
Applied Materials, Inc.
Inventors:
Jeffrey W. Anthis, Atashi Basu, David Thompson, Nasrin Kazem
Abstract: Pumping liners for process chambers including a first ring-shaped body and a second ring-shaped body are described. The first ring-shaped body has a first plurality of openings and the second ring-shaped body has a second plurality of openings. The first ring-shaped body and the second ring-shaped body are rotatable relative to each other around a central axis to at least partially overlap the first plurality of openings and the second plurality of openings to change the area of conductance through the openings. Methods of removing gases from a processing chamber are also described.
Type:
Application
Filed:
May 28, 2020
Publication date:
December 3, 2020
Applicant:
Applied Materials, Inc.
Inventors:
Muhannad Mustafa, Muhammad M. Rasheed, Mario D. Sanchez
Abstract: Process chamber lid assemblies and process chambers comprising same are described. The lid assembly has a housing with a gas dispersion channel in fluid communication with a lid plate. A contoured bottom surface of the lid plate defines a gap to a top surface of a gas distribution plate. A pumping channel is formed between an upper outer peripheral contour of the gas distribution plate and the lid plate.
Type:
Application
Filed:
May 28, 2020
Publication date:
December 3, 2020
Applicant:
Applied Materials, Inc.
Inventors:
Anqing Cui, Dien-Yeh Wu, Wei V. Tang, Yixiong Yang, Bo Wang
Abstract: A method may include heating a substrate in a first chamber to a platen temperature, the heating comprising heating the substrate on a platen; measuring the platen temperature in the first chamber using a contact temperature measurement; transferring the substrate to a second chamber after the heating; and measuring a voltage decay after transferring the substrate to the second chamber, using an optical pyrometer to measure pyrometer voltage as a function of time.
Type:
Application
Filed:
August 26, 2019
Publication date:
December 3, 2020
Applicant:
Applied Materials, Inc.
Inventors:
Eric D. Wilson, Steven Anella, D. Jeffrey Lischer, James McLane, Bradley M. Pomerleau, Dawei Sun
Abstract: Pumping liners for process chambers with slit openings are described. The pumping liners have a ring-shaped body with inner and outer walls. An annular upper channel is formed in the upper portion of the outer wall. The upper channel has a plurality of openings with a height, each opening having an independent width. A lower channel is formed in the lower portion of the outer wall and is separated from the upper channel by a partition. The lower channel is in fluid communication with the upper channel through at least one passage in the partition. A slit valve opening is in the lower portion of the body forming an opening in the outer wall and the inner wall.
Abstract: A method and apparatus for of improving processing results in a processing chamber by orienting a substrate support relative to a surface within the processing chamber. The method comprising orienting a supporting surface of a substrate support in a first orientation relative to an output surface of a showerhead, where the first orientation of the supporting surface relative to the output surface is not coplanar, and depositing a first layer of material on a substrate disposed on the supporting surface that is oriented in the first orientation.
Type:
Grant
Filed:
March 18, 2019
Date of Patent:
December 1, 2020
Assignee:
Applied Materials, Inc.
Inventors:
Jason M. Schaller, Michael Rohrer, Tuan Anh Nguyen, William Tyler Weaver, Gregory John Freeman, Robert Brent Vopat
Abstract: Apparatus and methods of processing a substrate in a plasma enhanced spatial atomic layer deposition chamber. A substrate is moved through one or more plasma processing regions and one or more non-plasma processing regions while the plasma power is pulsed to prevent a voltage differential on the substrate from exceeding a breakdown voltage of the substrate or device being formed on the substrate.
Type:
Grant
Filed:
December 12, 2018
Date of Patent:
December 1, 2020
Assignee:
Applied Materials, Inc.
Inventors:
Tsutomu Tanaka, Dmitry A. Dzilno, Alexander V. Garachtchenko, Keiichi Tanaka
Abstract: Methods for in-situ and real-time chamber condition monitoring is provided. For example, in one embodiment, for each wafer in a chamber, a frequency and wavelength of the free radicals in the chamber is monitored in-situ. The frequency and wavelength of the free radicals are associated with at least one selected chemical. The associated free radicals are compared to an index. The index includes a target range for each chemical in the at least one selected chemical.
Abstract: Methods for depositing a metal film without the use of a barrier layer are disclosed. Some embodiments comprise forming an amorphous nucleation layer comprising one or more of silicon or boron and forming a metal layer on the nucleation layer.
Abstract: A method of forming conformal amorphous metal films is disclosed. A method of forming crystalline metal films with a predetermined orientation is also disclosed. An amorphous nucleation layer is formed on a substrate surface. An amorphous metal layer is formed from the nucleation layer by atomic substitution. A crystalline metal layer is deposited on the amorphous metal layer by atomic layer deposition.
Abstract: The present disclosure generally relates to methods and apparatus for facilitating electrical feedthrough in plasma processing chambers. The apparatus includes an electrically insulating housing positioned on a backside of the substrate support to contain a secondary plasma therein. The secondary plasma facilitates an electrical connection between the substrate support and electrical power or ground located outside the processing chamber. The methods include utilizing a secondary plasma to electrically couple substrate support to and electrical power or ground located outside the processing chamber.
Abstract: An ion source having a thermally isolated repeller is disclosed. The repeller comprises a repeller disk and a plurality of spokes originating at the back surface of the repeller disk and terminating in a post. In certain embodiments, the post may be hollow through at least a portion of its length. The use of spokes rather than a central stem may reduce the thermal conduction from the repeller disk to the post. By incorporating a hollow post, the thermal conduction is further reduced. This configuration may increase the temperature of the repeller disk by more than 100° C. In certain embodiments, radiation shields are provided on the back surface of the repeller disk to reduce the amount of radiation emitted from the sides of the repeller disk. This may also help increase the temperature of the repeller. A similar design may be utilized for other electrodes in the ion source.
Type:
Grant
Filed:
September 10, 2019
Date of Patent:
December 1, 2020
Assignee:
Applied Materials, Inc.
Inventors:
Adam M. McLaughlin, Craig R. Chaney, Jordan B. Tye
Abstract: Exemplary methods for laterally etching tungsten may include flowing an oxygen-containing precursor into a semiconductor processing chamber. A substrate positioned within the semiconductor processing chamber may include a trench formed between two vertical columns and tungsten slabs arranged within a plurality of recesses defined by at least one of the two vertical columns. At least two of the tungsten slabs may be connected by tungsten lining a portion of sidewalls of the trench. The methods may further include oxidizing the tungsten connecting the at least two of the tungsten slabs with the oxygen-containing precursor. The methods may include flowing a halide precursor into the semiconductor processing chamber. The methods may also include laterally etching the oxidized tungsten from the sidewalls of the trench.
Abstract: Methods for forming 3D-NAND devices comprising recessing a poly-Si layer to a depth below a spaced oxide layer. A liner is formed on the spaced oxide layer and not on the recessed poly-Si layer. A metal layer is deposited in the gaps on the liner to form wordlines.
Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
Type:
Grant
Filed:
February 2, 2016
Date of Patent:
December 1, 2020
Assignee:
Applied Materials, Inc.
Inventors:
Chetan Mahadeswaraswamy, Walter R Merry, Sergio Fukuda Shoji, Chunlei Zhang, Yashaswini Pattar, Duy D Nguyen, Tina Tsong, Shane C Nevil, Douglas A Buchberger, Jr., Fernando M Silveira, Brad L Mays, Kartik Ramaswamy, Hamid Noorbakhsh
Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer made from copper and hafnium.
Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer made from copper and tellurium.
Abstract: Systems for electroplating seal inspection may include a module configured to support a seal for inspection. The module may include a set of supports positioned to contact an interior rim of the seal. The module may be configured to rotate the seal about a central axis. The system may also include a detector positioned on the module. The detector may be positioned to scan an exterior surface of the seal.
Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer made from boron and nickel.
Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer made from tellurium and germanium.