Patents Assigned to Applied Material
  • Patent number: 7749815
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes positioning a substrate containing a metal nitride barrier layer within a process chamber and exposing the substrate to a reagent gas containing diborane to form a reagent layer on the metal nitride barrier layer. The method further provides exposing the substrate sequentially to a tungsten precursor and a reductant to form a nucleation layer during an atomic layer deposition (ALD) process and subsequently depositing a bulk layer over the nucleation layer. The bulk layer may contain copper, but generally contains tungsten deposited by a chemical vapor deposition (CVD) process. In some examples, the bulk layer may be used to fill apertures within the substrate.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Jeong Soo Byun
  • Patent number: 7749574
    Abstract: The present invention generally comprises a silicon dioxide atomic layer deposition method. By providing pyridine as a catalyst, water may be utilized as the oxidization source while depositing at a low temperature. Prior to exposing the substrate to the water, the substrate may be exposed to a pyridine soak process. Additionally, the water may be co-flowed to the chamber with the pyridine through separate conduits to reduce interaction prior to entering the chamber. Alternatively, the pyridine may be co-flowed with a silicon precursor that does not react with pyridine.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Maitreyee Mahajani, Yi-Chiau Huang, Brendan McDougall
  • Patent number: 7748400
    Abstract: Embodiments are related to ampoule assemblies containing bypass lines and valves. In one embodiment, ampoule assembly is provided which includes inlet and outlet lines coupled with and in fluid communication to an ampoule body, a bypass line connected between the inlet and outlet lines and containing a bypass valve disposed therein. The ampoule assembly further contains a shut-off valve disposed in the inlet line between the ampoule body and a connection point of the bypass line and the inlet line, a shut-off valve disposed in the outlet line between the ampoule body and a connection point of the bypass line and the outlet line, another shut-off valve disposed in the inlet line between the ampoule body and a disconnect fitting disposed on the inlet line, and another shut-off valve disposed in the outlet line between the ampoule body and a disconnect fitting disposed on the outlet line.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Patent number: 7745352
    Abstract: Methods of curing a silicon oxide layer on a substrate are provided. The methods may include the processes of providing a semiconductor processing chamber and a substrate and forming an silicon oxide layer overlying at least a portion of the substrate, the silicon oxide layer including carbon species as a byproduct of formation. The methods may also include introducing an acidic vapor into the semiconductor processing chamber, the acidic vapor reacting with the silicon oxide layer to remove the carbon species from the silicon oxide layer. The methods may also include removing the acidic vapor from the semiconductor processing chamber. Systems to deposit a silicon oxide layer on a substrate are also described.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Abhijit Basu Mallick, Srinivas D. Nemani, Timothy W. Weidman
  • Patent number: 7745351
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7746088
    Abstract: A method and apparatus for testing a plurality of electronic devices formed on a large area substrate is described. In one embodiment, the apparatus performs a test on the substrate in one linear axis in at least one chamber that is slightly wider than a dimension of the substrate to be tested. Clean room space and process time is minimized due to the smaller dimensions and volume of the system.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Fayez E. Abboud, Sriram Krishnaswami, Benjamin M. Johnston, Hung T. Nguyen, Matthias Brunner, Ralf Schmid, John M. White, Shinichi Kurita, James C. Hunter
  • Patent number: 7745328
    Abstract: Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Melissa M. Tam, Dian Sugiarto, Chi-I Lang, Peter Wai-Man Lee, Li-Qun Xia
  • Patent number: 7746485
    Abstract: A method of determining a physical property of a substrate includes recording a first spectrum obtained from a substrate, the first spectrum being obtained during a polishing process that alters a physical property of the substrate. The method includes identifying, in a database, at least one of several previously recorded spectra that is similar to the recorded first spectrum. Each of the spectra in the database has a physical property value associated therewith. The method includes generating a signal indicating that a first value of the physical property is associated with the first spectrum, the first value being determined using the physical property value associated with the identified previously recorded spectrum in the database. A system for determining a physical property of a substrate includes a polishing machine, an endpoint determining module, and a database.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Abraham Ravid, Boguslaw A. Swedek, Jeffrey Drue David, Jun Qian, Ingemar Carlsson, Dominic J. Benvegnu, Harry Q. Lee, Lakshmanan Karuppiah
  • Patent number: 7746473
    Abstract: A method for precise endpoint detection during etch processing of a substrate based on adaptive filtering of the optical emission spectrum (OES) data, even in low open area etching, is provided. Endpoint detection performed in this manner offers the benefits of increased signal-to-noise ratio and decreased computation costs and delay when compared to conventional endpoint detection techniques.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Mikhail Taraboukhine
  • Patent number: 7745309
    Abstract: Methods for promoting interface bonding energy utilized in SOI technology are provided. In one embodiment, the method for promoting interface bonding energy includes providing a first substrate and a second substrate, wherein the first substrate has a silicon oxide layer formed thereon and a cleavage plane defined therein, performing a dry cleaning process on a surface of the silicon oxide layer and a surface of the second substrate, and bonding the cleaned silicon oxide surface of the first substrate to the cleaned surface of the second substrate.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Randhir P S Thakur, Stephen Moffatt, Per-Ove Hansson, Steve Ghanayem
  • Patent number: 7745333
    Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ken Kaung Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Avgerinos V. Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael X. Yang, Hua Chung, Jeong Soo Byun
  • Patent number: 7745329
    Abstract: In one embodiment, a method for forming a tungsten barrier material on a substrate is provided which includes depositing a tungsten layer on a substrate during a vapor deposition process and exposing the substrate sequentially to a tungsten precursor and a nitrogen precursor to form a tungsten nitride layer on the tungsten layer. Some examples provide that the tungsten layer may be deposited by sequentially exposing the substrate to the tungsten precursor and a reducing gas (e.g., diborane or silane) during an atomic layer deposition process. The tungsten layer may have a thickness of about 50 ? or less and tungsten nitride layer may have an electrical resistivity of about 380 ??-cm or less. Other examples provide that a tungsten bulk layer may be deposited on the tungsten nitride layer by a chemical vapor deposition process.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Patent number: 7745350
    Abstract: Methods are disclosed of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A first portion of the silicon oxide film is deposited over the substrate and within the gap using a high-density plasma process. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched back. This includes flowing a halogen precursor through a first conduit from a halogen-precursor source to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the portion has been etched back. Thereafter, a halogen scavenger is flowed to the substrate processing chamber to react with residual halogen in the substrate processing chamber. Thereafter, a second portion of the silicon oxide film is deposited over the first portion of the silicon oxide film and within the gap using a high-density plasma process.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Young S. Lee, Manoj Vellaikal, Jason Thomas Bloking, Jin Ho Jeon, Hemant P. Mungekar
  • Patent number: 7743728
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7743670
    Abstract: A method and apparatus for measuring gas flow are provided. In one embodiment, a calibration circuit for gas control may be utilized to verify and/or calibrate gas flows utilized for backside cooling, process gas delivery, purge gas delivery, cleaning agent delivery, carrier gases delivery and remediation gas delivery, among others.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jared Ahmed Lee, Ezra Robert Gold, Chunlei Zhang, James Patrick Cruse, Richard Charles Fovell
  • Publication number: 20100155379
    Abstract: Combined illumination is used to detect the positions of features such as scribe lines in different layers of a workpiece. Because combinations of layers of different material can scatter, reflect, scatter, and/or transmit light in different ways, combining and adjusting such illumination can allow positions of multiple features to be detected concurrently, such that the position of a feature being formed in one layer can be adjusted to a relative position with respect to a feature in another layer, even where those layers are of different materials with different optical properties.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: Applied Materials, Inc.
    Inventor: Bassam Shamoun
  • Publication number: 20100159711
    Abstract: Methods of depositing silicon oxide layers on substrates involve flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that a uniform silicon oxide growth rate is achieved across the substrate surface. The surface of silicon oxide layers grown according to embodiments may have a reduced roughness when grown with the additive precursor. In other aspects of the disclosure, silicon oxide layers are deposited on a patterned substrate with trenches on the surface by flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that the trenches are filled with a reduced quantity and/or size of voids within the silicon oxide filler material.
    Type: Application
    Filed: June 22, 2009
    Publication date: June 24, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Shankar Venkataraman, Hiroshi Hamana, Manuel A. Hernandez, Nitin K. Ingle, Paul Edward Gee
  • Publication number: 20100159123
    Abstract: The invention refers to an evaporation source for depositing of thin layers on substrates, the evaporation source comprising a vapor distribution system having an evaporation pipe made of inorganic non metallic material, with the evaporation pipe having at least one nozzle, wherein the nozzle is disposed in a nozzle element which is made as a separate component being arranged in a nozzle element opening of the evaporation pipe.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Stefan Bangert, Frank Mattern, Florian Ries, Elisabeth Sommer, Juergen Roth
  • Publication number: 20100159125
    Abstract: The present invention refers to a method as well as an apparatus for depositing a layer at a substrate, the layer containing at least two components co-deposited by at least two evaporation sources, wherein the mixture of the components regarding the content of the components is set by tilting the evaporation sources to predetermined angle and/or by positioning the evaporation sources at a predetermined distance with respect to the substrate and/or wherein evaporation plumes of the evaporation sources are arranged such that the maxima of the evaporation plumes are separated locally with respect to the substrate.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Juergen Bruch, Elisabeth Sommer, Uwe Hoffmann, Manuel Dieguez-Campo
  • Publication number: 20100160143
    Abstract: A solid solution-comprising ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The solid solution-comprising ceramic article is formed from a combination of yttrium oxide and zirconium oxide. In a first embodiment, the ceramic article includes ceramic which is formed from yttrium oxide at a molar concentration ranging from about 90 mole % to about 70 mole %, and zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %. In a second embodiment, the ceramic article includes ceramic which is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
    Type: Application
    Filed: February 19, 2010
    Publication date: June 24, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins