Patents Assigned to ASML Holding N.V.
-
Patent number: 9358696Abstract: A fluid proximity sensor for surface measurements having a measurement chamber (210) with a measurement nozzle (205), a reference chamber (220) with a reference nozzle (225), and a diaphragm (215) forming an interface between the reference chamber and the measurement chamber. A shroud (280) that encloses the measurement nozzle and reference nozzle provides a peripheral gap (295) between the shroud and a work surface (290) being measured. By connecting either a partial vacuum supply or a partial fluid supply to the shroud, the internal shroud pressure can be raised or lowered and thus the gain-frequency operating regime of the proximity sensor optimized. Movement of the diaphragm in response to differential pressure changes can be sensed by optical, capacitive or inductive means (275).Type: GrantFiled: June 15, 2010Date of Patent: June 7, 2016Assignee: ASML Holding N.V.Inventor: Joseph H. Lyons
-
Patent number: 9329502Abstract: A lithographic apparatus can include a component and a positioning system operatively coupled and configured to move the component along a first axis. The positioning system can be configured to measure a position of the component along a second axis or a third axis. The positioning system can also be configured to control movement of the component so as to compensate for an effect of eigenmode coupling between the movement of the component along the first axis and the measured position of the component along the second axis or the third axis. In some embodiments, the component is a reticle stage or a wafer stage.Type: GrantFiled: April 11, 2013Date of Patent: May 3, 2016Assignees: ASML Holding N.V., ASML Netherlands B.V.Inventors: Christopher Charles Ward, Mark Henricus Wilhelmus Van Gerven, Bram Paul Theodoor Van Goch
-
Patent number: 9298105Abstract: In a lithographic apparatus, slippage of a patterning device is substantially eliminated during movement of a patterning device stage by providing a magnetostrictive actuator to apply an accelerating force to the patterning device to compensate for forces that would otherwise tend to cause slippage when the patterning device stage moves.Type: GrantFiled: October 28, 2014Date of Patent: March 29, 2016Assignee: ASML Holding N.V.Inventor: Darya Amin-Shahidi
-
Publication number: 20160077443Abstract: Provided is a method and apparatus for moving and exchanging reticles within a vacuum lithographic system with minimum particle generation and outgassing. In an example of the method, a first arm of a rotational exchange device (RED) receives a first baseplate holding a first reticle. A second arm of the RED supports and buffers a second baseplate. The first and second baseplates are located substantially equidistant from an axis of rotation of the RED.Type: ApplicationFiled: November 20, 2015Publication date: March 17, 2016Applicants: ASML Holding N.V., ASML Netherlands B.V.Inventors: Robert Gabriël Maria LANSBERGEN, George Hilary HARROLD, Richard John JOHNSON, Hugo Jacobus Gerardus VAN DER WEIJDEN
-
Patent number: 9285687Abstract: An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.Type: GrantFiled: September 10, 2012Date of Patent: March 15, 2016Assignee: ASML Holding N.V.Inventors: Stanislav Y Smirnov, Lev Ryzhikov, Eric Brian Catey, Adel Joobeur, David Heald, Yevgeniy Konstantinovich Shmarev, Richard Jacobs
-
Patent number: 9268241Abstract: Provided is a method and apparatus for moving and exchanging reticles within a vacuum lithographic system with minimum particle generation and outgassing. In an example of the method, a first arm of a rotational exchange device (RED) receives a first baseplate holding a first reticle. A second arm of the RED supports and buffers a second baseplate. The first and second baseplates are located substantially equidistant from an axis of rotation of the RED.Type: GrantFiled: April 14, 2009Date of Patent: February 23, 2016Assignees: ASML Holding N.V., ASML Netherlands B.V.Inventors: Robert Gabriël Maria Lansbergen, George Hilary Harrold, Richard John Johnson, Hugo Jacobus Gerardus Van Der Weijden
-
Patent number: 9229341Abstract: A system and method substantially eliminate reticle slip during the movement of a reticle stage. The system includes a mask holding system, a mask force device, and a support transport device. The mask holding system includes a support device and a holding device where the holding device releasably couples a mask, e.g., a patterning device such as a reticle having a pattern, to the support device. The mask force device is releasably connected to the mask in order to provide an accelerating force to the mask, such that a projection optic in a lithographic apparatus may accurately project a pattern imparted by the patterning device onto a target portion of the substrate by using a radiation beam. The support transport device is coupled to and moves the mask support device concurrently with the mask force device.Type: GrantFiled: November 30, 2009Date of Patent: January 5, 2016Assignee: ASML Holding N.V.Inventors: Santiago E. Del Puerto, Enrico Zordan
-
Patent number: 9222847Abstract: In one embodiment of the present invention, there is provided a gas gauge for use in a vacuum environment having a measurement gas flow channel. The gas gauge may comprise a measurement nozzle in the measurement gas flow channel. The measurement nozzle may be configured to operate at a sonically choked flow condition of a volumetric flow being sourced from a gas supply coupled to the measurement gas flow channel. The gas gauge may further comprise a pressure sensor operatively coupled to the measurement gas flow channel downstream from the sonically choked flow condition of the volumetric flow to measure a differential pressure of the volumetric flow for providing an indication of a gap between a distal end of the measurement nozzle and a target surface proximal thereto.Type: GrantFiled: December 11, 2013Date of Patent: December 29, 2015Assignee: ASML Holding N.V.Inventor: Geoffrey Alan Schultz
-
Publication number: 20150370180Abstract: A support such as a clamp (310) is configured to releasably hold a patterning device such as a reticle (300) to secure it and prevent heat-induced deformation of it. For example, an electrostatic clamp includes a first substrate (312) having opposing first (313) and second (315) surfaces, a plurality of burls (316) located on the first surface and configured to contact the reticle, a second substrate (314) having opposing first (317) and second (319) surfaces. The first surface of the second substrate is coupled to the second surface of the first substrate. A plurality of cooling elements (318) are located between the first surface of the second substrate and the second surface of the first substrate. The cooling elements are configured to cause electrons to travel from the second surface of the first substrate to the first surface of the second substrate. Each cooling element is substantially aligned with a respective burl.Type: ApplicationFiled: February 5, 2014Publication date: December 24, 2015Applicants: ASML Holding N.V., ASML Netherlands B.V.Inventors: Santiago E. DEL PUERTO, Matthew LIPSON, Kenneth C. HENDERSON, Raymond Wilhelmus Louis LAFARRE, Louis John MARKOYA, Tammo UITTERDIJK, Johannes VERMEULEN, Antonius Franciscus Johannes DE GROOT, Ronald VAN DER WILK
-
Publication number: 20150355557Abstract: A system is disclosed for reducing overlay errors by controlling gas flow around a patterning device of a lithographic apparatus. The lithographic apparatus includes an illumination system configured to condition a radiation beam. The lithographic apparatus further includes a movable stage comprising a support structure that may be configured to support a patterning device. The patterning device may be configured to impart the radiation beam with a pattern in its cross-section to form a patterned radiation beam. In addition, the lithographic apparatus comprises a plate (410) positioned between the movable stage (401) and the projection system (208). The plate includes an opening (411) that comprises a first sidewall (411a) and a second sidewall (411b). The plate may be configured to provide a gas flow pattern (424) in a region between the movable stage and the projection system that is substantially perpendicular to an optical axis of the illumination system.Type: ApplicationFiled: February 20, 2014Publication date: December 10, 2015Applicants: ASML Netherlands B.V., ASML Holding N.V.Inventors: Koen CUYPERS, Marcelo Henrique DE ANDRADE OLIVEIRA, Marinus Jan REMIE, Chattarbir SINGH, Laurentius Johannes Adrianus VAN BOKHOVEN, Henricus Anita Jozef Wilhemus VAN DE VEN, José Nilton FONSECA JUNIOR, Frank Johannes Jacobus VAN BOXTEL, Daniel Nathan BURBANK, Erik Roelof LOOPSTRA, Johannes ONVLEE, Mark Josef SCHUSTER, Robertus Nicodemus Jacobus VAN BALLEGOIJ, Christopher Charles WARD, Jan Steven Christiaan WESTERLAKEN
-
Patent number: 9195148Abstract: A method for protecting a wet lens element from liquid degradation is provided. The method includes applying a thin coating of an organoxy-metallic compound to the side portions of a wet lens element to leave behind an optically inert, light absorbing metal oxide film. A liquid shield coating is applied on top of the metal oxide coating. The two coating layers protect the wet lens element from liquid degradation when the side portion of the wet lens element is submerged into a liquid. In an embodiment, the wet lens element is an immersion lithography wet lens element and the liquid is an immersion lithography liquid.Type: GrantFiled: July 13, 2010Date of Patent: November 24, 2015Assignee: ASML Holding N.V.Inventors: Matthew Lipson, Taras Shvets, Richard Bruls
-
Publication number: 20150301456Abstract: A patterning device support (1100) for controlling a temperature of a patterning device (1102) can include a movable component (1104). The movable component can include a gas inlet (1108) for supplying a gas flow across a surface of the patterning device and a gas outlet (1110) for extracting the gas flow. The patterning device support can also include a gas flow generator (1118) coupled to a duct (1114, 1116) for recirculating the gas flow from the gas outlet to the gas inlet.Type: ApplicationFiled: October 21, 2013Publication date: October 22, 2015Applicants: ASML Holding N.V., ASML Neherlands B.V.Inventors: Earl William EBERT, JR., Johannes ONVLEE, Samir A. NAYFEH, Mark Josef SCHUSTER, Peter A. DELMASTRO, Christopher Charles WARD, Frank Johannes Jacobus VAN BOXTEL, Abdullah ALIKHAN, Daniel Nathan BURBANK, Daniel Nicholas GALBURT, Justin Matthew VERDIRAME
-
Publication number: 20150277241Abstract: A system (300) for supporting an exchangeable object (302) can include a movable structure (304) and an object holder (306) configured to be movable relative to the movable structure. The object holder can be configured to hold the exchangeable object. The system can also include a first actuator assembly (308) and second actuator assembly (316). The first actuator assembly can be configured to apply a force to the object holder to translate the exchangeable object generally along a plane. The second actuator assembly can be configured to apply a bending moment to the object holder. The exchangeable object can be a patterning device of a lithographic apparatus.Type: ApplicationFiled: September 20, 2013Publication date: October 1, 2015Applicants: ASML Netherlands B.V., ASML Holding N.V.Inventors: Christiaan Louis Valentin, Erik Roelof Loopstra, Christopher Charles Ward, Daniel Nathan Burbank, Mark Josef Schuster, Peter James Graffeo
-
Publication number: 20150277240Abstract: A patterning device support (200), for example, a patterning device (202) or substrate support, can be configured to release internal stresses of a patterning device loaded thereon. The patterning device support can include a positive pressuring generating interface (206a, 206b) or an acoustic vibration generating interface (206a, 206b), or can be configured to oscillate while at least a portion of patterning device is decoupled from the patterning device support. A method of transferring a patterning device between a patterning device handling apparatus and a patterning device support configured to move the patterning device can include positioning the patterning device onto a surface of the patterning device support, and performing a process that releases internal stress of the patterning device.Type: ApplicationFiled: September 23, 2013Publication date: October 1, 2015Applicants: ASML Holding N.V., ASML Netherlands B.V.Inventors: Arindam Sinharoy, Stephen S. Roux, Jean-Philippe Xavier Van Damme, Daniel Nathan Burbank, Mark Josef Schuster, Duncan Harris, Christopher Charles Ward
-
Patent number: 9134620Abstract: A lithographic apparatus includes a uniformity correction system located at a plane and configured to receive a substantially constant pupil when illuminated with the beam of radiation. The uniformity correction system includes fingers that move into and out of intersection with a beam so as to correct an intensity of respective portions of the radiation beam. According to another embodiment, a method includes for: focusing a beam of radiation at a first plane to form pupil; adjusting the intensity of the beam near the first plane by moving fingers located near the first plane into and out of a path of the beam of radiation, wherein a width of a tip of each of the fingers is larger than that of corresponding actuating devices used to move each corresponding one of the fingers; patterning the beam; and projecting the patterned beam onto a substrate.Type: GrantFiled: April 12, 2012Date of Patent: September 15, 2015Assignee: ASML Holding N.V.Inventor: Richard Carl Zimmerman
-
Patent number: 9136751Abstract: A magnetic shield having non-magnetic gaps provides reduced magnetic cross-talk for a linear motor array in a precision positioning system. Redirecting the leakage flux limits the cross-talk and associated deleterious effects. Such preferred magnetic circuit paths for the leakage are affixed to the moving magnet system of the linear motor. Embodiments of the preferred flux leakage paths are realized by providing a ferromagnetic shield separated by a non-magnetic gap between the permanent magnets and the back-irons. In another embodiment, the ferromagnetic shield separation includes diamagnetic materials.Type: GrantFiled: September 14, 2012Date of Patent: September 15, 2015Assignee: ASML Holding N.V.Inventors: Kalyan Kumar Mankala, Roberto Bernardo Wiener, Pradeep Kumar Govil, Andrew Nelson
-
Publication number: 20150256058Abstract: A lithographic apparatus including a uniformity correction system is disclosed. The lithographic apparatus comprises an illumination system configured to condition a beam of radiation. The illumination system comprises a uniformity correction system located at a plane configured to receive a substantially constant pupil when illuminated with the beam of radiation. The uniformity correction system includes fingers configured to be movable into and out of intersection with a radiation beam so as to correct an intensity of respective portions of the radiation beam. A linear motor actuator arrangement drives the fingers to their respective appropriate positions to compensate for non-uniform illumination. Control is provided by a control system that precisely manipulates carriers of the fingers.Type: ApplicationFiled: May 21, 2015Publication date: September 10, 2015Applicant: ASML Holding N.V.Inventor: Peter C. KOCHERSPERGER
-
Patent number: 9130443Abstract: A magnetic shield having non-magnetic gaps provides reduced magnetic cross-talk for a linear motor array in a precision positioning system. Redirecting the leakage flux limits the cross-talk and associated deleterious effects. Such preferred magnetic circuit paths for the leakage are affixed to the moving magnet system of the linear motor. Embodiments of the preferred flux leakage paths are realized by providing a ferromagnetic shield separated by a non-magnetic gap between the permanent magnets and the back-irons. In another embodiment, the ferromagnetic shield separation includes diamagnetic materials.Type: GrantFiled: November 20, 2009Date of Patent: September 8, 2015Assignee: ASML Holding N.V.Inventors: Kalyan Kumar Mankala, Roberto Bernardo Wiener, Pradeep Kumar Govil, Andrew Nelson
-
Publication number: 20150241796Abstract: A system for controlling temperature of a patterning device in a lithographic apparatus is discussed. The system includes a patterning device support configured to support a patterning device and a reticle cooling system configured to provide substantially uniform temperature distribution across the patterning device. The reticle cooling system includes a first and second array of gas inlets configured to provide a first and second gas flow along a first and second direction across a surface of the patterning device, respectively, where first and second directions are opposite to each other. The reticle cooling system further includes a switching control system configured to control operation of the first and second arrays of gas inlets.Type: ApplicationFiled: April 29, 2015Publication date: August 27, 2015Applicants: ASML Holding N.V., ASML Netherlands B.V.Inventors: Earl William EBERT, JR., Johannes ONVLEE, Samir A. NAYFEH, Mark Josef SCHUSTER, Peter A. DELMASTRO, Christopher Charles WARD, Frank Johannes Jacobus VAN BOXTEL, Abdullah ALIKHAN, Daniel Nathan BURBANK, Daniel Nicholas GALBURT, Justin Matthew VERDIRAME, Thomas VENTURINO
-
Publication number: 20150241797Abstract: Methods and systems are described for cleaning contamination from the surface of an object within a lithographic apparatus. A lithographic apparatus is provided that includes an illumination system configured to condition a radiation beam, a support constructed to hold a patterning device (302), the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam, a substrate table constructed to hold a substrate, and a projection system configured to project the patterned radiation beam onto a target portion of the substrate. The lithographic apparatus further includes a cleaning system (500) for cleaning particles off of a surface of either the support or the patterning device. The cleaning system includes a cleaning surface (502) designed to contact the surface of either the support or the patterning device.Type: ApplicationFiled: July 30, 2013Publication date: August 27, 2015Applicants: ASML Netherlands B.V., ASML Holding N.V.Inventors: Johannes Onvlee, Christopher J. Mason, Peter A. Delmastro, Sanjeev Kumar Singh, Ronald Peter Albright