Patents Assigned to ASML Netherlands
  • Publication number: 20240077380
    Abstract: A method of predicting thermally induced aberrations of a projection system for projecting a radiation beam, the method comprising: calculating an irradiance profile for at least one optical element of the projection system from a power and illumination source pupil of the radiation beam, estimating a temperature distribution as a function of time in the at least one optical element of the projection system using the calculated irradiance profile for the at least one optical element of the projection system; calculating the thermally induced aberrations of the projection system based on the estimated temperature distribution and a thermal expansion parameter map associated with the at least one optical element of the projection system, wherein the thermal expansion parameter map is a spatial map indicating spatial variations of thermal expansion parameters in the at least one optical element of the projection system or a uniform map.
    Type: Application
    Filed: January 5, 2022
    Publication date: March 7, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Marinus Maria Johannes VAN DE WAL, Koos VAN BERKEL, Victor Sebastiaan DOLK, Stijn Clyde Natalia THISSEN, Mauritius Gerardus Elisabeth SCHNEIDERS, Adrianus Hendrik KOEVOETS
  • Publication number: 20240079205
    Abstract: Assessment systems and methods are disclosed. In one arrangement, charged particles are directed in sub-beams arranged in a multi-beam towards a sample. A plurality of control electrodes define a control lens array. Each control lens in the control lens array is aligned with a sub-beam path of a respective sub-beam of the multi-beam and configured to operate on the respective sub-beam. A plurality of objective electrodes define an objective lens array that directs the sub-beams onto a sample. Objective lenses are aligned with a sub-beam path aligned with a respective control lens. Selectable landing energies are implemented for a sub-beam of the multi-beam by applying corresponding potentials to the control electrodes and the objective electrodes. A controller is configured to select corresponding potentials so a spatial relationship between an image plane of the system and all control electrodes and objective electrodes is the same for each selectable landing energy.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Marco Jan-Jaco WIELAND
  • Publication number: 20240079204
    Abstract: A method of detecting charged particles may include detecting beam intensity as a primary charged particle beam moves along a first direction; acquiring a secondary beam spot projection pattern as the primary charged particle beam moves along a second direction; and determining a parameter of a secondary beam spot based on the acquired secondary beam spot projection pattern. A method of compensating for beam spot changes on a detector may include acquiring a beam spot projection pattern on the detector, determining a change of the beam spot projection pattern, and adjusting a parameter of a detector cell of the detector based on the change. Another method may be provided for forming virtual apertures with respect to detector cells of a detector.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 7, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Yongxin WANG, Oleg KRUPIN, Weiming REN, Xuerang HU, Xuedong LIU
  • Publication number: 20240071713
    Abstract: There is provided a charged particle apparatus comprising: a particle beam generator, optics, a first and a second positioning device, both configured for positioning the substrate relative to the particle beam generator along its optical axis, and a controller configured for switching between a first operational mode and a second operational mode. The apparatus is configured, when operating in the first operational mode, for irradiating the substrate by the particle beam at a first landing energy of the particle beam and, when operating in the second operational mode, for irradiating the substrate at a second, different landing energy. When operating in the first operational mode, the second positioning device is configured to position the substrate relative to the particle beam generator at a first focus position of the particle beam and in the second operational mode, to position the substrate at a second, different focus position.
    Type: Application
    Filed: December 9, 2021
    Publication date: February 29, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Niels Johannes Maria BOSCH, Xu WANG, Peter Paul HEMPENIUS, Yongqiang WANG, Hans BUTLER, Youjin WANG, Jasper Hendrik GRASMAN, Jianzi SUI, Tianming CHEN, Aimin WU
  • Publication number: 20240071716
    Abstract: The embodiments of the present disclosure provide a charged particle assessment system comprising: a sample holder configured to hold a sample having a surface; a charged particle-optical device configured to project a charged particle beam towards the sample, the charged particle beam having a field of view corresponding to a portion of the surface of the sample, the charged particle-optical device having a facing surface facing the sample holder; and a projection assembly arranged to direct a light beam along a light path such that the light beam reflects off the facing surface up-beam, with respect to the light path, of being incident on the portion of the surface of the sample.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 29, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Marco Jan-Jaco WIELAND
  • Publication number: 20240069450
    Abstract: A method and apparatus for training a defect location prediction model to predict a defect for a substrate location is disclosed. A number of datasets having data regarding process-related parameters for each location on a set of substrates is received. Some of the locations have partial datasets in which data regarding one or more process-related parameters is absent. The datasets are processed to generate multiple parameter groups having data for different sets of process-related parameters. For each parameter group, a sub-model of the defect location prediction model is created based on the corresponding set of process-related parameters and trained using data from the parameter group. A trained sub-model(s) may be selected based on process-related parameters available in a candidate dataset and a defect prediction may be generated for a location associated with the candidate dataset using the selected sub-model.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 29, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Nabeel Noor MOIN, Chenxi LIN, Yi ZOU
  • Patent number: 11914307
    Abstract: The invention provides an inspection apparatus for inspecting an object, the apparatus comprising: a measurement system configured to measure: —a first parameter of the object across an area of interest of the object, and —a second parameter, different from the first parameter, of the object at a plurality of locations on the object; a stage apparatus configured to position the object relative to the measurement system during a measurement of the first parameter, wherein the measurement system is configured to measure the second parameter at the plurality of different locations during the measurement of the first parameter and wherein the stage apparatus is configured to position the object relative to the measurement system based on a compliance characteristic of the stage apparatus.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: February 27, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Bas Johannes Petrus Roset, Johannes Hendrik Everhardus Aldegonda Muijderman, Benjamin Cunnegonda Henricus Smeets
  • Publication number: 20240061347
    Abstract: A modular autoencoder model is described. The modular autoencoder model comprises input models configured to process one or more inputs to a first level of dimensionality suitable for combination with other inputs; a common model configured to: reduce a dimensionality of combined processed inputs to generate low dimensional data in a latent space; and expand the low dimensional data in the latent space into one or more expanded versions of the one or more inputs suitable for generating one or more different outputs; output models configured to use the one or more expanded versions of the one or more inputs to generate the one or more different outputs, the one or more different outputs being approximations of the one or more inputs; and a prediction model configured to estimate one or more parameters based on the low dimensional data in the latent space.
    Type: Application
    Filed: December 20, 2021
    Publication date: February 22, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Alexandru ONOSE, Bart Jacobus Martinus TIEMERSMA, Nick VERHEUL, Remco DIRKS
  • Publication number: 20240060906
    Abstract: A modular autoencoder model is described. The modular autoencoder model comprises input models configured to process one or more inputs to a first level of dimensionality suitable for combination with other inputs; a common model configured to: reduce a dimensionality of combined processed inputs to generate low dimensional data in a latent space; and expand the low dimensional data in the latent space into one or more expanded versions of the one or more inputs suitable for generating one or more different outputs; output models configured to use the one or more expanded versions of the one or more inputs to generate the one or more different outputs, the one or more different outputs being approximations of the one or more inputs; and a prediction model configured to estimate one or more parameters based on the low dimensional data in the latent space.
    Type: Application
    Filed: December 20, 2021
    Publication date: February 22, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Bart Jacobus Martinus TIEMERSMA, Alexandru ONOSE, Nick VERHEUL, Remco DIRKS
  • Publication number: 20240062362
    Abstract: An improved systems and methods for generating a synthetic defect image are disclosed. An improved method for generating a synthetic defect image comprises acquiring a machine learning-based generator model; providing a defect-free inspection image and a defect attribute combination as inputs to the generator model; and generating by the generator model, based on the defect-free inspection image, a predicted synthetic defect image with a predicted defect that accords with the defect attribute combination.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 22, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Zhe WANG, Liangjiang YU, Lingling PU
  • Publication number: 20240062356
    Abstract: A method and apparatus for analyzing an input electron microscope image of a first area on a first wafer are disclosed. The method comprises obtaining a plurality of mode images from the input electron microscope image corresponding to a plurality of interpretable modes. The method further comprises evaluating the plurality of mode images, and determining, based on evaluation results, contributions from the plurality of interpretable modes to the input electron microscope image. The method also comprises predicting one or more characteristics in the first area on the first wafer based on the determined contributions. In some embodiments, a method and apparatus for performing an automatic root cause analysis based on an input electron microscope image of a wafer are also disclosed.
    Type: Application
    Filed: December 9, 2021
    Publication date: February 22, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Huina XU, Yana MATSUSHITA, Tanbir HASAN, Ren-Jay KOU, Namita Adrianus GOEL, Hongmei LI, Maxim PISARENCO, Marleen KOOIMAN, Chrysostomos BATISTAKIS, Johannes ONVLEE
  • Patent number: 11906906
    Abstract: Disclosed is a method of metrology comprising using measurement illumination to measure a target, said measurement illumination comprising a plurality of illumination conditions. The method comprises performing a first measurement capture with a first subset of said plurality of illumination conditions, e.g., each comprising a positive weighting, to obtain a first parameter value and performing a second measurement capture with a second subset of said plurality of illumination conditions, e.g., each comprising a negative weighting, to obtain a second parameter value. An optimized parameter value is determined as a weighted combination of at least the first parameter value and the second parameter value.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: February 20, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Sebastianus Adrianus Goorden, Simon Reinald Huisman, Arjan Johannes Anton Beukman
  • Patent number: 11908591
    Abstract: A combined enrichment and radioisotope production apparatus comprising an electron source arranged to provide an electron beam, the electron source comprising an electron injector and an accelerator, an undulator configured to generate a radiation beam using the electron beam, a molecular stream generator configured to provide a stream of molecules which is intersected by the radiation beam, a receptacle configured to receive molecules or ions selectively received from the stream of molecules, and a target support structure configured to hold a target upon which the electron beam is incident in use.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 20, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Pieter Willem Herman De Jager, Antonius Theodorus Anna Maria Derksen
  • Patent number: 11908656
    Abstract: A stage apparatus for a particle-beam apparatus is disclosed. A particle beam apparatus may comprise a conductive object and an object table, the object table being configured to support an object. The object table comprises a table body and a conductive coating, the conductive coating being provided on at least a portion of a surface of the table body. The conductive object is disposed proximate to the conductive coating and the table body is provided with a feature proximate to an edge portion of the conductive coating. Said feature is arranged so as to reduce an electric field strength in the vicinity of the edge portion of the conductive coating when a voltage is applied to both the conductive object and the conductive coating.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: February 20, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Han Willem Hendrik Severt, Jan-Gerard Cornelis Van Der Toorn, Ronald Van Der Wilk, Allard Eelco Kooiker
  • Publication number: 20240055221
    Abstract: An improved readout circuit for a charged particle detector and a method for operating the readout circuit are disclosed. An improved circuit comprises an amplifier configured to receive a signal representing an output of a sensor layer and comprising a first input terminal and an output terminal, a capacitor connected between the first input terminal and the output terminal, and a resistor connected in parallel with the capacitor between the first input terminal and the output terminal. The circuit can be configured to operate in a first mode and a second mode. The capacitor can be adjustable using a capacitance value of the capacitor to enable control of a gain of the circuit operating in the first mode and control of a bandwidth of the circuit operating in the second mode.
    Type: Application
    Filed: December 13, 2021
    Publication date: February 15, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Jan Louis SUNDERMEYER, Leonhard Martin KLEIN, Matthias OBERST, Harald Gert Helmut NEUBAUER
  • Publication number: 20240055219
    Abstract: Apparatus and methods for directing a beam of primary electrons along a primary beam path onto a sample are disclosed. In one arrangement, a beam separator diverts away from the primary beam path a beam of secondary electrons emitted from the sample along the primary beam path. A dispersion device is upbeam from the beam separator. The dispersion device compensates for dispersion induced in the primary beam by the beam separator. One or more common power supplies drive both the beam separator and the dispersion device.
    Type: Application
    Filed: November 29, 2021
    Publication date: February 15, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Mans Johan Bertil OSTERBERG, Kenichi KANAI
  • Patent number: 11899374
    Abstract: A method for determining electromagnetic fields associated with a mask model of a patterning process. The method includes obtaining a mask stack region of interest and an interaction order corresponding to the mask stack region of interest. The mask stack region of interest is divided into sub regions. The mask stack region of interest has one or more characteristics associated with propagation of electromagnetic waves through the mask stack region of interest. The method includes generating one or more electromagnetic field determination expressions based on the Maxwell Equations and the Quantum Schrodinger Equation. The method includes determining an electromagnetic field associated with the mask stack region of interest based on the sub regions of the mask stack region of interest and the characteristics associated with the propagation of electromagnetic waves through the mask stack region of interest, using the one or more electromagnetic field determination expressions.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 13, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Xingyue Peng, Jingjing Liu
  • Publication number: 20240044820
    Abstract: Disclosed herein is an apparatus comprising: a source configured to emit charged particles, an optical system and a stage; wherein the stage is configured to support a sample thereon and configured to move the sample by a first distance in a first direction; wherein the optical system is configured to form probe spots on the sample with the charged particles; wherein the optical system is configured to move the probe spots by the first distance in the first direction and by a second distance in a second direction, simultaneously, while the stage moves the sample by the first distance in the first direction; wherein the optical system is configured to move the probe spots by the first distance less a width of one of the probe spots in an opposite direction of the first direction, after the stage moves the sample by the first distance in the first direction.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 8, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Kuo-Feng TSENG, Zhonghua DONG, Yixiang WANG, Zhong-wei CHEN
  • Publication number: 20240047173
    Abstract: A monolithic detector may be used in a charged particle beam apparatus. The detector may include a plurality of sensing elements formed on a first side of a semiconductor substrate, each of the sensing elements configured to receive charged particles emitted from a sample and to generate carriers in proportion to a first property of a received charged particle, and a plurality of signal processing components formed on a second side of the semiconductor substrate, the plurality of signal processing components being part of a system configured to determine a value that represents a second property of the received charged particle. The substrate may have a thickness in a range from about 10 to 30 ?m. The substrate may include a region configured to insulate the plurality of sensing elements formed on the first side from the plurality of signal processing components formed on the second side.
    Type: Application
    Filed: December 10, 2021
    Publication date: February 8, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Matthias OBERST, Harald Gert Helmut NEUBAUER, Thomas SCHWEIGER
  • Publication number: 20240045346
    Abstract: A reticle stage cleaning apparatus for a reticle stage in a lithographic apparatus includes a substrate having a frontside and a backside opposite the frontside and a conductive layer disposed on the frontside of the substrate. The conductive layer is configured to contact the reticle stage to dissipate charge on the reticle stage and to remove particles on the reticle stage via an electrostatic field generated between the conductive layer and the reticle stage. The substrate can include a plurality of grooves and the conductive layer can be disposed on the frontside of the substrate and on a bottom surface of the plurality of grooves. The reticle stage cleaning apparatus can include a second conductive layer configured to remove particles on the reticle stage via a second electrostatic field and be disposed atop the conductive layer in the bottom surface of the plurality of grooves.
    Type: Application
    Filed: December 9, 2021
    Publication date: February 8, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Pedro Julian RIZO DIAGO, George Grigorievich VOEVODKIN, Earl William EBERT