Abstract: A protection circuit and method are provided for protecting semiconductor devices from electrostatic discharge (ESD). Generally, the ESD protection circuit includes a silicon controlled rectifier (SCR) formed in a substrate and configured to transfer charge from a protected node to a negative power supply, VSS, during an ESD event, and a trigger device to activate transfer of charge by the SCR when a voltage on the protected node reaches a predetermined trigger voltage. The trigger device includes a gated-diode and MOS capacitor formed in a well formed in the substrate, the trigger device configured to inject electrons into the well during charging of the MOS capacitor, forward biasing a node of the SCR, hence allowing fast triggering of the SCR device. The trigger voltage can be set independent of a holding voltage by adjusting the length of the well and area of the capacitor. Other embodiments are also disclosed.
Abstract: A USB control circuit for increasing USB endpoints includes a token detection circuit. The USB control circuit is configured to receive a first logical endpoint (LEP) address and a USB token. The token detection circuit is configured to determine a direction of a USB data transfer in accordance with a USB token type. The USB control circuit includes an endpoint configuration and status control logic circuit in communication with the token detection circuit. The endpoint configuration and status control logic circuit is configured to control configuration and status information associated with each of a plurality of LEP input buffers and LEP output buffers. The USB control circuit is configured to generate a second LEP address in accordance with a combination of the first LEP address and the determined direction to increase a quantity of LEPs without increasing a quantity of physical endpoint buffers of a USB device.
Abstract: A system includes a bandgap temperature sensor to generate multiple base-emitter voltages. The system also include a controller to detect the base-emitter voltages generated by the bandgap temperature sensor and to generate a bandgap reference voltage according to the multiple base-emitter voltage signals, the bandgap reference voltage having a voltage level that remains substantially constant relative to environmental temperature variations.
Abstract: A light emitting driver circuit, system, and method are provided. The driver circuit system and method can be implemented in various ways. An embodiment includes a bypass circuit which diverts current from the LEDs whenever a switch coupled to the LEDs incurs residual current when turned off. In an additional or alternative embodiment, the residual current can be sensed and the amount of residual current used to trigger fetching of a compensation value. That compensation value can change a dimming function forwarded to the switch in order to compensate for, offset, or substantially eliminate the residual current through that switch.
Abstract: A capacitance sensing system can include a noise detector coupled to a capacitance sensing network that generates a noise detect signal in response to noise; a delay circuit coupled to generate at least two different delayed sense signals in response to outputs from the capacitance sensing network; and a switch circuit that selectively outputs one of the delayed sense signals in response to the noise detect signal. Particular embodiments can include selectively discarding discrete analog samples of a capacitance signal when noise is detected in such a sample.
Abstract: A method and apparatus receive a plurality of signals that are used to calculate a position of a conductive object relative to a capacitive sensor element and determine an estimated position error through the plurality of signals, the estimated position error to offset a position error of the calculated position.
Type:
Application
Filed:
August 23, 2011
Publication date:
March 1, 2012
Applicant:
CYPRESS SEMICONDUCTOR CORPORATION
Inventors:
Steve Kolokowsky, Vasyl Mandziy, Oleksandr Karpin, Yuriy Boychuk
Abstract: Left and right stereo channels L and R are provided to a first set of two or more speakers of a speaker array. A bass signal B is applied to a second set of one or more speakers of the speaker array. The level of L and R applied to the first set of speakers is increased as the first set of speakers is rotated to become more horizontally aligned. The level of B applied to the first set of speakers is decreased as the first set of speakers is rotated to become more horizontally aligned.
Abstract: A method and apparatus scan a plurality of scan groups in a capacitive sense array to generate signals corresponding to a mutual capacitance between the electrodes. Each of the plurality of scan groups is formed from a subset of the plurality of electrodes. A processing device identifies a scan group where the generated signal is affected by a presence of a conductive object. The processing device individually scans the subset of the plurality of sense elements in the identified scan group to determine a location of the conductive object.
Type:
Application
Filed:
February 25, 2011
Publication date:
March 1, 2012
Applicant:
CYPRESS SEMICONDUCTOR CORPORATION
Inventors:
Victor Kremin, Oleksandr Pirogov, Andriy Ryshtun
Abstract: A capacitance sensing system may include a current conveyor circuit coupled to receive induced current from a capacitance sensing structure at a low impedance current input port; and a comparator having an input coupled to a high impedance output port of the current conveyor circuit, and an output coupled to the current conveyor circuit by a feedback path and coupled to drive the capacitance sensing structure to generate the induced current.
Abstract: In embodiments described herein, a memory architecture has an array of non-volatile memory cells and a pair of independently controlled voltage pumps. The pair of voltage pumps is coupled for supplying both positive and negative voltage biases to the memory array during program and erase operations, such that a sum of the magnitudes of the positive and negative voltage biases is applied across a storage node of an accessed memory cell.
Type:
Grant
Filed:
December 24, 2008
Date of Patent:
February 28, 2012
Assignee:
Cypress Semiconductor Corporation
Inventors:
Ryan T. Hirose, Fredrick Jenne, Vijay Raghavan, Igor G. Kouznetsov, Paul Fredrick Ruths, Cristinel Zonte, Bogdan I. Georgescu, Leonard Vasile Gitlan, James Paul Myers
Abstract: Methods and a system for continuous integrity checking of configuration data of programmable device are disclosed. In one embodiment, a method includes performing a redundancy check (RC) of configuration data loaded to configuration registers to produce a master RC data. The method further includes iteratively comparing a current RC data obtained by performing the redundancy check (RC) of current configuration data of the configuration registers with the master RC data until there is a mismatch between the current RC data and the master RC data. Additionally, the method includes performing an exception event in response to the mismatch.
Abstract: A system for the calibration of a programmable system-on-a-chip is described. More specifically, embodiments of the present invention relate to a system that calibrates a programmable analog block in a system-on-a-chip without the use of external components.
Type:
Grant
Filed:
May 10, 2010
Date of Patent:
February 28, 2012
Assignee:
Cypress Semiconductor Corporation
Inventors:
Harold Kutz, Warren Synder, Bert Sullam, Dennis Seguine, Gajender Rohilla, Eashwar Thiagarajan
Abstract: Systems and methods for horizontal capacitively sensed pointing devices. Embodiments in accordance with the present invention capacitively sense planar movement with structures that are substantially perpendicular to the plane of movement. In accordance with a first embodiment of the present invention, a sensing mechanism for a pointing device operable to accept movement in a plane includes structures of the mechanism that are substantially perpendicular to the plane. The structures may include a parallel plate capacitor.
Abstract: An apparatus and method of discrimination among activation of multiple capacitive sensor buttons in close proximity to each other is described.
Abstract: A method for configuring a touchscreen controller may include identifying a model of a touchscreen by measuring a capacitance or resistance of at least one element integrated in the touchscreen, identifying the model of the touchscreen based on the measured capacitance or resistance, and configuring the touchscreen controller based on the identified model of the touchscreen.
Abstract: A capacitance measurement circuit for measuring self and mutual capacitances may include a first electrode capacitively coupled with a second electrode, a first plurality of switches coupled with the first electrode, and a second plurality of switches coupled with the second electrode, wherein, during a first operation stage, the first plurality of switches is configured to apply a first initial voltage to the first electrode and the second plurality of switches is configured to apply a second initial voltage to the second electrode, and wherein, during a second operation stage, the first plurality of switches is configured to connect the first electrode with a measurement circuit, and the second plurality of switches is configured to connect the second electrode with a constant voltage.
Abstract: One embodiment of a capacitive sensor array comprises a plurality of row sensor elements including a first row sensor element, a plurality of column sensor elements including a first column sensor element, and a plurality of unit cells, wherein a first unit cell contains an intersection between the first row sensor element and the first column sensor element, and wherein a ratio between 1) a boundary length between the first row sensor element and the first column sensor element within the first unit cell and 2) a perimeter of the first unit cell is greater than ?{square root over (2)}/2.
Type:
Application
Filed:
January 18, 2011
Publication date:
February 23, 2012
Applicant:
Cypress Semiconductor Corporation
Inventors:
Tao Peng, XiaoPing Weng, DangDang Shao, Yingzhu Deng
Abstract: A method and apparatus to detect a conductive object at a location determines a capacitance variation of a first sensor element and a capacitance variation of a second sensor element. The method and apparatus detects a touch at a first location if the capacitance variation of the first sensor element is greater than a reference value and the capacitance variation of the second sensor element is not greater than the reference value. The method and apparatus detects the touch at a second location if the capacitance variation of the first sensor element is not greater than the reference value and the capacitance variation of the second sensor element is greater than the reference value. The method and apparatus detects the touch at a third location if the capacitance variation of the first sensor element and the capacitance variation of the second sensor element are both greater than the reference value.