Abstract: A light emitting driver circuit, system, and method are provided. The driver circuit system and method can be implemented in various ways. An embodiment includes a bypass circuit which diverts current from the LEDs whenever a switch coupled to the LEDs incurs residual current when turned off. In an additional or alternative embodiment, the residual current can be sensed and the amount of residual current used to trigger fetching of a compensation value. That compensation value can change a dimming function forwarded to the switch in order to compensate for, offset, or substantially eliminate the residual current through that switch.
Abstract: A capacitive sensor may include a transmit electrode and a receive electrode capacitively coupled with the transmit electrode. A capacitance sensing circuit senses a capacitance between the transmit and receive electrodes by applying a signal to the transmit electrode and rectifying a current waveform induced at the receive electrode. A compensation circuit reduces the effect of a mutual and parasitic capacitances of the transmit and receive electrode pair by adding a compensation current to the rectified current.
Abstract: A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.
Type:
Grant
Filed:
May 22, 2008
Date of Patent:
January 10, 2012
Assignee:
Cypress Semiconductor Corporation
Inventors:
William W. C. Koutny, Jr., Sam Geha, Igor Kouznetsov, Krishnaswamy Ramkumar, Fredrick B. Jenne, Sagy Levy, Ravindra Kapre, Jeremy Warren
Abstract: A method and apparatus for high-side control of an optical transducer provides improved current control and temperature compensation and uses stochastic modulation for improved spectral characteristics.
Abstract: Disclosed is an improved noise reducing apparatus using an anti-circuit, including a digital logic circuit and a digital anti-circuit corresponding to the digital logic circuit. The digital anti-circuit functions to cancel noise generated by the digital logic circuit. The anti-circuit includes logic to generate a similar number of switching edges as the logic circuit, where the anti-circuit edges are in the opposite direction as the logic circuit. The anti-circuit may have a circuit structure close to that of the noisy circuit, or can be formed of components different in structure but generating an output pattern similar to (and opposite from) the noisy circuit. In some embodiments, the differently structured components can include a state machine coupled to a memory or look-up-table.
Abstract: A method includes receiving hardware description code that generically describes circuitry, and translating the hardware description code into one or more configuration files specific to a programmable system. The method further includes generating program code for a microcontroller of the programmable system based, at least in part, on the hardware description code, and configuring the programmable system to implement the circuitry according to the configuration files and the program code.
Type:
Application
Filed:
January 10, 2011
Publication date:
January 5, 2012
Applicant:
CYPRESS SEMICONDUCTOR CORPORATION
Inventors:
Haneef Mohammed, Jack Griffin, Christopher Keeser, Mark Hastings
Abstract: A capacitive sensor includes a switching capacitor circuit, a comparator, and a charge dissipation circuit. The switching capacitor circuit reciprocally couples a sensing capacitor in series with a modulation capacitor during a first switching phase and discharges the sensing capacitor during a second switching phase. The comparator is coupled to compare a voltage potential on the modulation capacitor to a reference and to generate a modulation signal in response. The charge dissipation circuit is coupled to the modulation capacitor to selectively discharge the modulation capacitor in response to the modulation signal.
Abstract: An intelligent voltage regulator circuit in accordance with one embodiment of the invention can include a variable voltage generator that is coupled to receive an input voltage. Additionally, the intelligent voltage regulator circuit can include a processing element that is coupled to the variable voltage generator. The processing element can be coupled to receive programming for controlling a characteristic of the intelligent voltage regulator circuit. The processing element can be for dynamically changing the characteristic during operation of the intelligent voltage regulator circuit.
Abstract: A circuit and method are provided for controlling power consumption in an electronic circuit. Generally, the method involves measuring current flow through a memory core in the circuit, the memory core including a number of cells each with a number of active devices, and, if current flow exceeds a predetermined amount limiting it by applying reverse body bias to the active devices. In one embodiment, power is supplied to the memory through a low drop-out (LDO) regulator fabricated on a common substrate therewith, and the LDO regulator functions as a current mirror to mirror current through the memory core through a replica stack. Other embodiments are also disclosed.
Abstract: A controller circuit can provide communication paths between multiple host devices and at least one function interface (I/F), where a function I/F can allow access to a predetermined circuit function. The controller circuit can include an endpoint buffer circuit having a plurality of storage locations configurable as endpoints according to a predetermined data transmission protocol and a data switching circuit coupled to the endpoint point buffer circuit. The data switching circuit is configurable to provide communication paths that enable a first host I/F and a second host I/F to access at least a same function I/F, and enable the first and second host I/Fs to communicate with one another.
Abstract: A method and apparatus is disclosed herein for mapping a touch sensing device to two sets of output objects. In one embodiment, the method includes mapping a first set of output objects into a plurality of one dimensional positions of a touch sensing device when a presence of a conductive object is determined to be in a first region, among a plurality of regions, of the touch sensing device. The method further includes mapping a second set of output objects into the plurality of one dimensional positions of the touch sensing device when the presence of the conductive object is determined to be in a second region, distinct from the first region, of the touch sensing device.
Abstract: Deposition and anneal operations are iterated to break a deposition into a number of sequential deposition-anneal operations to reach a desired annealed dielectric layer thickness. In one particular embodiment, a two step anneal is performed including an NH3 or ND3 ambient followed by an N2O or NO ambient. In one embodiment, such a method is employed to form a dielectric layer having a stoichiometry attainable with only a deposition process but with a uniform material quality uncharacteristically high of a deposition process. In particular embodiments, sequential deposition-anneal operations provide an annealed first dielectric layer upon which a second dielectric layer may be left substantially non-annealed.
Abstract: One embodiment of a capacitive sensor array may comprise a first plurality of sensor elements and a second sensor element comprising a main trace, where the main trace intersects each of the first plurality of sensor elements to form a plurality of intersections. A unit cell may be associated with each of the intersections, and each unit cell may designate a set of locations nearest to the corresponding intersection. A contiguous section of the main trace may cross at least one of the plurality of unit cells. Within each unit cell, the second sensor element may comprise at least one primary subtrace branching away from the main trace.
Abstract: An example antenna includes a first end portion, a second end portion, and an intermediate portion between the first end portion and the second end portion. The intermediate portion includes multiple folds. The second end portion includes a first conductor to couple with a communication interface of a communication module, and a second conductor to couple with a ground.
Abstract: A substrate bias circuit may measure a leakage current of a baseline device, compare the leakage current with a reference current, and based on the comparison, adjust a reverse body bias voltage applied to a body of the baseline device.
Abstract: A method and an apparatus are described for sensing of a multi-state signal. An embodiment of a method includes driving a digital input line with a signal, the signal alternating between a first state and a second state. The method further includes sensing one or more values of the digital input line, and determining a state of the digital input line based on the sensed values.
Abstract: A frequency synthesis/multiplication circuit and method for multiplying the frequency of a reference signal. In one embodiment, multiple versions of the reference signal are generated having different phases relative to one another, and these multiple versions are combined to form an output signal having a frequency that is a multiple of the frequency of the reference signal.