Abstract: A data processing system includes a processor configured to execute processor instructions and a memory. The memory has a data array and a checkbit array wherein each entry of the checkbit array includes a plurality of checkbits and corresponds to a storage location of the data array. The system includes error detection/correction logic configured to, during normal operation, detect an error in data access from a storage location of the data array using the plurality of checkbits in the entry corresponding to the storage location. The system further includes debug logic configured to, during debug mode, use a portion of the plurality of the checkbits in the entry corresponding to the storage location to generate a breakpoint/watchpoint request for the processor.
Abstract: A semiconductor device comprises a power transistor and a sense transistor. The power transistor conducts a power transistor current. The sense transistor conducts a sense transistor current substantially proportional to of the power transistor current. The power transistor and the sense transistor have drain source and a gate terminals, of which those of the sense transistor are arranged to be biased to those of the power transistor, respectively. The power transistor and the sense transistor each comprise: an inner region of type P?; an N-type buried layer; an N-type isolating barrier surrounding the inner region partially; an N-type source region in the inner region; an N-type drain region in the inner region. A barrier-to-drain connector connects the isolating barrier to the drain region, the one of the sense transistor has an electrical resistance which is higher than the resistance of the barrier-to-drain connector of the power transistor.
Abstract: A mixed mode integrated circuit, a method of providing a controllable test clock signal to a sub-circuitry of the mixed-mode integrated circuit and a method of detecting current paths causing violations of electromagnetic compatibility standards in the mixed mode integrated circuit are provided. The mixed mode integrated circuit 100 comprises in addition to a clock network 110 an integrated test clock signal generator 140 to generate test clock signals that are provided via controllable multiplexers 150, 160 to an analog and digital sub-circuitry, respectively, of the mixed-mode integrated circuit. The test clock signals are generated on basis of an input test clock signal having a controllable frequency. The clock network generates clock signals for the sub-circuitries that are used by the sub-circuitries under normal operational conditions. The controllable multiplexers provide either the test clock signal to a specific sub-circuitry or a clock signal received from the clock network.
Abstract: A method of making a semiconductor device forms anchors for one or more layers of material. The method includes depositing a first layer of material on a substrate, applying a mask over the first layer of material to mask nanoparticle-sized areas of the first material, removing portions of the first layer of material to form a first set of recesses around the nanoparticle-sized areas of the first material, depositing a second layer of material in the recesses and over the nanoparticle-sized areas so that a second set of recesses is formed in a top surface of the second layer of material, and forming a component of the semiconductor device over the second layer of material. Material of a bottom surface of the component is included in the second set of recesses.
Abstract: An integrated circuit device comprises a signal processing system having at least one first signal processing module fabricated by way of a first production process; and at least one second signal processing module fabricated by way of a second production process, wherein the second production process is different to the first production process. The signal processing system further comprises a signal processing management module arranged to: determine a desired system performance of the integrated circuit device; determine at least one operating condition of the signal processing system; and configure a signal processing operating mode of the signal processing system based at least partly on: the determined desired system performance; the at least one determined operating condition; and at least one of the first production process and the second production process.
Abstract: A method of packaging a semiconductor device is described. The method includes: attaching a first surface of a semiconductor die to a carrier; forming one or more first stud bumps on the carrier; using bond wires, electrically connecting one or more locations on a second surface of the semiconductor die to one or more first stud bumps; molding the semiconductor die, the first stud bumps, and the bond wires in an encapsulation material; removing the carrier from the bottom side of the semiconductor package exposing a portion of the first stud bumps; and attaching one or more solder balls to the exposed portion of the first stud bumps.
Abstract: A method includes applying a compressive force against MEMS structures at a front side of a MEMS wafer using a protective material covering at least a portion of the front side of the MEMS wafer. The method further includes concurrently dicing through the protective material and the MEMS wafer from the front side to produce a plurality of MEMS dies, each of which includes at least one of the MEMS structures. The protective material is secured over the front side of the MEMS wafer to apply pressure to the protective material, and thereby impart the compressive force against the MEMS structures to largely limit movement of the MEMS structures during dicing. A tack-free surface of the protective material enables its removal following dicing.
Abstract: An electrostatic discharge (ESD) device is disclosed having two PNP transistors. During a high-voltage ESD event a parasitic NPN transistor couples to one of the two PNP transistors to provide ESD protection.
Abstract: In at least one embodiment of the disclosure, a method includes detecting an error in a local memory shared by redundant computing modules executing in delayed lockstep. The method includes pausing execution in the redundant computing modules and handling the error of the local memory. The method includes resuming execution in delayed lockstep of the redundant computing modules in response to the handling of the error.
Type:
Application
Filed:
March 24, 2015
Publication date:
September 29, 2016
Applicant:
Freescale Semiconductor, Inc.
Inventors:
Manfred P. Thanner, Stephan G. Mueller, Alexandre P. Palus, Anthony M. Reipold
Abstract: A method of undervoltage detection includes detecting a voltage level for a power supply of a system, placing the system in an undervoltage state if the voltage level is below an undervoltage threshold, activating a load of the system at a first power level if the detected voltage level exceeds a first activation threshold and if the system resides in the undervoltage state, and activating the load at a second power level if the detected voltage level exceeds a second activation threshold.
Type:
Application
Filed:
March 27, 2015
Publication date:
September 29, 2016
Applicant:
FREESCALE SEMICONDUCTOR, INC.
Inventors:
William E. Edwards, Anthony F. Andresen
Abstract: A device includes a semiconductor substrate, a first constituent transistor including a first plurality of transistor structures in the semiconductor substrate connected in parallel with one another, and a second constituent transistor including a second plurality of transistor structures in the semiconductor substrate connected in parallel with one another. The first and second constituent transistors are disposed laterally adjacent to one another and connected in parallel with one another. Each transistor structure of the first plurality of transistor structures has a lower resistance in a saturation region of operation than each transistor structure of the second plurality of transistor structures.
Type:
Application
Filed:
March 26, 2015
Publication date:
September 29, 2016
Applicant:
FREESCALE SEMICONDUCTOR, INC.
Inventors:
Won Gi Min, Pete Rodriquez, Hongning Yang, Jiang-Kai Zuo
Abstract: Flip-flop cells that enable time borrowing during the design of the IC to improve setup times while avoiding introducing meta-stability, and alternatively to avoid hold time violations. The flip-flop cells are connected with logic cells in functional data paths. The flip-flop cell has a clock signal controlling both its input and output. A selective delay cell selectively delays either a data signal input to the flip-flop cell or the clock signal controlling the flip-flop cell. The selectively delayed signal adjusts the timing (setup, hold and clock-to-output) of the data path.
Abstract: A memory device includes a storage unit formed using a substrate, a true bit line BL0 for carrying a bit of data, and a complementary bit line for carrying the bit of data carried by the first true bit line in complementary form. The true bit line is coupled to the storage unit and runs laterally over the substrate. The true bit line and the complementary bit line are adjacent to each other and are vertically stacked above the substrate.
Abstract: A method for selecting locations within an integrated circuit device for placing stressors to manage electromigration failures includes calculating an electric current for an interconnect within the integrated circuit device and determining an electromigration stress profile for the interconnect based on the electric current. The method further includes determining an area on the interconnect for placing a stressor to alter the electromigration stress profile for the interconnect.
Type:
Grant
Filed:
May 31, 2014
Date of Patent:
September 27, 2016
Assignee:
Freescale Semiconductor, Inc.
Inventors:
Mehul D. Shroff, Douglas M Reber, Edward O. Travis
Abstract: A structure to improve saw singulation quality and wettability of integrated circuit packages (140) is assembled with lead frames (112) having half-etched recesses (134) in leads. In one embodiment, the structure is a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the lead frame strip. In another embodiment, the structure is a semiconductor device package (140) that includes a semiconductor device encapsulated in a package body (142) having a plurality of leads (120). Each lead has an exposed portion external to the package. There is recess (134) at a corner of each lead. Each recess has a generally concave configuration. Each recess is filled with a removable material (300).
Type:
Grant
Filed:
April 27, 2015
Date of Patent:
September 27, 2016
Assignee:
FREESCALE SEMICONDUCTOR, INC.
Inventors:
Dwight L. Daniels, Stephen R. Hooper, Alan J. Magnus, Justin E. Poarch
Abstract: A system for generating a tamper detection signal indicating tampering with one or more circuits of an integrated circuit (IC) includes both a static wire mesh and an active wire mesh. The wire meshes can be formed in the same layer over the circuits to be protected or in different layers. The wire meshes also may cover the entire chip area or only predetermined areas, such as over secure memory and register areas. The wire meshes are connected to a tamper detection module, which monitors the meshes and any signals transmitted via the meshes to detect attempts to access the protected circuits via micro-probing.
Abstract: The present application relates to an apparatus for detecting software interference and the method of operating thereof. A processor and at least one shared resource form a computing shell to execute a first, functional safety critical application and at least one second application in time-shared operation. One or more performance counters are provided to adjust a counter value in response to a performance related event. A reference value storage stores one or more threshold values, each of which is associated with one of the performance counters. A comparator receives the performance counter values, compares the performance counter values with the respective threshold values and generates at least one comparison signal in response to results of the comparisons. An interference indication generator receives the at least one comparison signal and generates at least one interference indication in response to the at least one received comparison signal.
Abstract: A data processing device, comprising a processing unit and a test control unit connected to the processing unit, is described. The processing unit and the test control unit are arranged to: start a logic test of the processing unit; detect a test abort event; and, in response to the test abort event, perform an event response action which comprises aborting the logic test and booting the processing unit, said booting including executing an event handling routine. The event response action may comprise setting a reset vector to an address of the event handling routine. System availability may thus be improved. In particular, the delay between capturing an asynchronous signal and responding to it may be reduced. The test abort event may, for example, be an asynchronous event having certain pre-defined characteristics. A method of operating a data processing device is also described.
Type:
Application
Filed:
November 25, 2013
Publication date:
September 22, 2016
Applicant:
FREESCALE SEMICONDUCTOR, INC.
Inventors:
Steven MCLAUGHLIN, Alan DEVINE, Alistair James GORMAN, Alistair Paul ROBERSTON
Abstract: A circuit arrangement for Logic Built-In Self-Test (LBIST) includes a clock source configured to generate a system clock, a first clock division circuitry configured to derive a first punched-out clock and a plurality of scan chains operable at the first punched-out clock. Each scan chain has an associated output circuitry responsive to a leading edge of the first punched-out clock. The circuit arrangement includes a second clock division circuitry configured to derive a second punched-out clock. The second punched-out clock has a delay of one or more system clock periods relative to the first punched-out clock. A compacting logic is configured to compact signals received from the scan chains. A sequential retiming element connects the compacting logic to an input circuitry of a MISR. The sequential retiming element is responsive to a trailing edge of the second punched-out clock. The input circuitry is responsive to a leading edge of the second punched-out clock.
Type:
Grant
Filed:
August 22, 2012
Date of Patent:
September 20, 2016
Assignee:
Freescale Semiconductor, Inc.
Inventors:
Heiko Ahrens, Claudia Latzel, Bernhard Richter
Abstract: An integrated circuit device includes a cut-through forwarding module. The cut-through forwarding module includes at least one receiver component arranged to receive data to be forwarded, and at least one transmitter component arranged to transmit data stored within at least one transmitter buffer thereof. The cut-through forwarding module further includes at least one delimiter component arranged to trigger a transmission of frame data within the at least one transmitter buffer, upon receipt of a first number elements of a respective data frame by the at least one receiver component, the first number of data elements comprising a first predefined integer value.