Patents Assigned to Global Unichip Corporation
  • Patent number: 11144485
    Abstract: An interface for a semiconductor device includes a master device and a plurality of slave devices. The interface includes a master interface and a slave interface. The master interface is implemented in the master device and includes a master bond pattern of master bonds arranged as a first array. The slave interface is implemented each slave device and includes a slave bond pattern of slave bonds arranged as a second array. The first array of the master bonds includes a first central row and first data rows in two parts being symmetric to the first central row. The second array of the slave bonds includes a second central row and second data rows in two parts being symmetric to the second central row. The first central row and the second central row are aligned in connection, and the first data rows are connected to the second data rows.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: October 12, 2021
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Igor Elkanovich, Amnon Parnass, Pei Yu, Li-Ken Yeh, Yung-Sheng Fang, Sheng-Wei Lin, Tze-Chiang Huang, King Ho Tam, Ching-Fang Chen
  • Publication number: 20210303767
    Abstract: An establishing method for the timing model includes: identifying at least one first victim path which is a boundary path in a circuit block; determining whether to remove a first aggressor path corresponding to the first victim path according to a transmission delay on the first victim path; finding a plurality of high-fanout circuit devices with a fanout number greater than a preset value in the circuit block; determining whether to remove each of the high-fanout circuit devices according to a connection position of each of the high-fanout circuit devices; identifying a plurality of second victim paths corresponding to each of the high-fanout circuit devices, and determining whether to keep or remove a second aggressor path corresponding to each of the second victim paths according to a transmission delay of each of the second victim paths.
    Type: Application
    Filed: May 3, 2020
    Publication date: September 30, 2021
    Applicants: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Hsiung Liao, Min-Hsiu Tsai
  • Patent number: 11101781
    Abstract: An amplifier device includes an amplifier circuitry, a controller circuitry, and an offset cancellation circuitry. The amplifier circuitry is configured to amplify a first input signal and a second input signal, in order to generate a first output signal and a second output signal. The controller circuitry is configured to generate a first control signal and a second control signal according to the first output signal and the second output signal. The offset cancellation circuitry is configured to provide a negative capacitor to the amplifier circuitry, and to adjust at least one current flowing through a circuit, which provides the negative capacitor, of the offset cancellation circuitry according to the first control signal and the second control signal, in order to cancel an offset of the amplifier circuitry.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: August 24, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Chung Chen, Tsai-Ming Yang, Ting-Hsu Chien
  • Patent number: 11101790
    Abstract: A comparator circuitry includes an input pair circuit, a load circuit, and a compensation circuit. The input pair circuit is configured to compare a first input signal with a second input signal, in order to control a first bias current. The load circuit is coupled to the input pair circuit, and is configured to output an output signal having a first level from a first output terminal of the load circuit in response to the first bias current. The compensation circuit is coupled to the input pair circuit and the load circuit, and is configured to drain a compensation current from the first output terminal to a voltage source during a period that the load circuit generates the output signal having a first level, in which the voltage source is configured to provide a voltage having a second level.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: August 24, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ting-Hao Wang, Hao-Che Hsu, Pei-Ju Lin
  • Patent number: 11095251
    Abstract: A performance calculation method suitable for a chip is provided. The chip includes oscillator circuit systems configured to generate oscillation signals and to sense operation states of the chip to adjust periods of the oscillation signals. The method includes following operations: when the chip is in a first operation state, constructing a first function according to the periods of the oscillation signals and a first performance value of the chip; when the chip is in a second operation state, constructing a second function according to the periods of the oscillation signals and a second performance value of the chip; adjusting coefficients of the first or second function according to trajectories of graphs of the first and second functions, so that the graphs of the first and second functions intersect at a coordinate point; constructing a performance function of the chip according to the first and second functions.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: August 17, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ting-Hao Wang, Pei-Ju Lin
  • Patent number: 11075641
    Abstract: An analog to digital converter (ADC) device includes ADC circuits, a calibration circuit, and a skew adjusting circuit. The ADC circuits convert an input signal according to interleaved clock signals, in order to generate first quantized outputs. The calibration circuit performs at least one calibration computation according to the first quantized outputs to generate second quantized outputs. The skew adjusting circuit determines calculating signals, to which the second quantized outputs correspond in a predetermined interval, and averages the calculating signals to generate a reference signal, and compares the reference signal with each of the calculating signals to generate detecting signals, and determines whether the detecting signals are adjusted or not according to a signal frequency to generate adjusting signals, in order to reduce a clock skew in the ADC circuits.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: July 27, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Juh Kang, Yu-Chu Chen, Ting-Hao Wang
  • Patent number: 11075640
    Abstract: An analog to digital converter (ADC) device includes ADC circuits, a calibration circuit, and a skew adjusting circuit. The ADC circuits are configured to convert an input signal according to interleaved clock signals to generate first quantized outputs. The calibration circuit is configured to perform at least one calibration operation according to the first quantized outputs to generate second quantized outputs. The skew adjusting circuit further includes a first adjusting circuit. The first adjusting circuit is configured to analyze adjacent clock signals according to part of the second quantized outputs to generate adjusting information. The skew adjusting circuit is configured to analyze time difference information within even-numbered sampling periods of the clock signals according to the second quantized outputs and the adjusting information to generate adjustment signals. The adjustment signals are configured to reduce clock skews of the ADC circuits.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: July 27, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. :
    Inventors: Wen-Juh Kang, Yu-Chu Chen, Hsin-Han Han
  • Publication number: 20210223290
    Abstract: A probe card module including a probe card assembly and a strengthening structure is provided. The probe card assembly includes a first surface, a second surface opposite to the first surface, and a plurality of probes protruding from the first surface. The second surface includes a central zone and a peripheral zone surrounding the central zone. Projections of the probes on the second surface are located at the central zone. The strengthening structure is disposed on the second surface and includes two support bases which protrude from the peripheral zone and are away from each other, and the strengthening structure also includes an arc-shaped reinforcement assembly connected to the two support bases, where the arc-shaped reinforcement assembly protrudes toward and leans against the central zone.
    Type: Application
    Filed: February 18, 2020
    Publication date: July 22, 2021
    Applicants: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chieh Liao, Yu-Min Sun, Chih-Feng Cheng
  • Patent number: 11070221
    Abstract: An analog to digital converter (ADC) device includes ADC circuits, a calibration circuit, and a skew adjusting circuit. The ADC circuits convert an input signal according to interleaved clock signals, in order to generate first quantized outputs. The calibration circuit performs at least one calibration computation according to the first quantized outputs to generate second quantized outputs. The skew adjusting circuit determines maximum value signals, to which the second quantized outputs correspond in a predetermined interval, and averages the maximum value signals to generate a reference signal, and compares the reference signal with each of the maximum value signals to generate detecting signals, and determines whether the detecting signals are adjusted or not according to a signal frequency to generate adjusting signals, in order to reduce a clock skew in the ADC circuits.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: July 20, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO, LTD.
    Inventors: Ting-Hao Wang, Hsin-Han Han, Yu-Chu Chen
  • Patent number: 11063596
    Abstract: A frame decoding circuit implemented in an IC die includes a frame synchronizer, receiving an input clock signal and an input frame signal in serial form, to provide an output clock signal. A phase shift of the output clock signal is adjusted according to a detected code by sampling the input frame signal at a center point for every two bits and the detected code being not a correct type. The input clock signal is divided in frequency with the phase shift for providing the output clock signal. A de-serializer unit receives the input frame signal, the input data, the output clock signal from the frame synchronizer, a delay-locked-loop clock signal to de-serialize the input frame signal and the input data for output.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: July 13, 2021
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Hao Wang, Ting-Chin Cho, Hui-Ting Yang, Yung-Sheng Fang, Chang-Ming Liu, Igor Elkanovich, Amnon Parnass
  • Patent number: 11043956
    Abstract: An analog-to-digital converting system includes multiple stages of analog-to-digital converters (ADCs) and a skew calibration circuit. The multiple stages of ADCs are configured to sample a test signal according to multiple interleaved clock signals, respectively, so as to respectively generate multiple stages of quantized outputs. The analog-to-digital converting system has a sampling frequency resulting from operations of the multiple stages of ADCs. The test signal has a first frequency and the sampling frequency is N times the first frequency, and N is an odd number larger than 1. The skew calibration circuit is configured to sequentially analysis, for every N stages, the multiple stages of quantized outputs to generate multiple digital codes. The skew calibration circuit is further configured to calibrate a time skew of the analog-to-digital converting system according to a comparison result between the multiple digital codes and a reference code.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: June 22, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shao-Hua Wan, Ting-Hao Wang, Yu-Chu Chen
  • Patent number: 11037886
    Abstract: A semiconductor structure of a work unit module includes an encircling noise-resistance structure and a P-type substrate being defined with a chip region and a surrounding region surrounding the chip region. The surrounding area includes two first strip regions and two second strip regions. Each of the first strip regions is located between the second strip regions, and each of the second strip regions is located between the first strip regions. The encircling noise-resistance structure is located on the surrounding area, and includes first arrangement units and second arrangement units. The first arrangement unit is arranged in one of the first strip regions in a single row. The second arrangement unit is arranged in one of the second strip regions in a single row, and the long axis direction of the second arrangement unit is different from the long axis direction of the first arrangement unit.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: June 15, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Ya Tseng, Wei-Cheng Yu, Bo-Yan Li, Wen-Tai Wang
  • Patent number: 11031923
    Abstract: An interface device and an interface method for interfacing between a master device and a slave device is provided. The master device generates command and the slave device generates data according to the command. The interface device includes a master interface and a slave interface. The master interface is coupled to the master device and configured to send the command to the slave device and/or receive the data from the slave device. The slave interface is coupled to the slave device and configured to receive the command from the master device and/or send the data to the master device. The master interface and the slave interface are driven by a clock generated by a clock generator. The master interface and the slave interface are electrically connected by one or plurality of bonds and/or TSVs.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: June 8, 2021
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Igor Elkanovich, Amnon Parnass, Pei Yu, Li-Ken Yeh, Yung-Sheng Fang, Sheng-Wei Lin, Tze-Chiang Huang, King Ho Tam, Ching-Fang Chen
  • Patent number: 11005643
    Abstract: A communication receiving device includes a clock data recovery circuit, an analog-to-digital converter (ADC), a channel evaluating circuit, a first equalizer, and a selector. The clock data recovery circuit is configured to generate a clock signal according to a first digital signal. The ADC is coupled to the clock data recovery circuit, and configured to convert a first analog signal to a second digital signal according to the clock signal. The channel evaluating circuit is configured to analyze the second digital signal to output a selection signal. The first equalizer is coupled to the ADC, and configured to equalize the second digital signal to generate a third digital signal. The selector is coupled between the first equalizer, the ADC, and the clock data recovery circuit. The selector is configured to output the second digital signal or the third digital signal as the first digital signal according to the selection signal.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 11, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Juh Kang, Yu-Chu Chen, Hsun-Wei Kao
  • Patent number: 10969424
    Abstract: A chip includes at least one oscillator circuitry and a controller circuitry. The at least one oscillator circuitry is disposed at different locations of the chip, and respectively generates a plurality of oscillating signals. The controller circuitry transmits the oscillating signals to an external system, in order to determine a performance of the chip based on the oscillating signals. Each of the at least one oscillator circuitry includes a first oscillator circuit and a second oscillator circuit. The first oscillator circuit senses a variation of a semiconductor device in the chip, in order to generate a first oscillating signal of the oscillating signals. The second oscillator circuit senses a variation of a parasitic component in the chip, in order to generate a second oscillating signal of the oscillating signals.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: April 6, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ting-Hao Wang, Pei-Ju Lin
  • Patent number: 10965284
    Abstract: A voltage mode signal transceiving device and a voltage mode signal transmitter thereof are provided. The voltage mode signal transmitter includes a driver, an output resistor, and a compensation capacitor. The driver provides a transmitting signal to an output end, where the output end is coupled to a receiver. The output resistor is connected in series to a coupling path between the driver and the receiver. The compensation capacitor and the output resistor are coupled in parallel. A capacitance value of the compensation capacitor is essentially equal to a capacitance value of an equivalent capacitor on an input end of the receiver.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 30, 2021
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Hsu Chien, Yen-Chung T. Chen, Wen-Lung Tu
  • Patent number: 10917103
    Abstract: An analog-to-digital converter (ADC) device includes ADC circuitries, a calibration circuitry, and a skew adjusting circuitry. The ADC circuitries convert an input signal according to interleaved clock signals, in order to generate first quantized outputs. The calibration circuitry performs at least one calibration operation according to the first quantized outputs to generate second quantized outputs. The skew adjusting circuitry analyzes time difference information within even-numbered sampling periods of the clock signals, in order to generate adjustment signals. The adjustment signals are for reducing a clock skew in the ADC circuitries.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: February 9, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Juh Kang, Yu-Chu Chen, Man-Pio Lam
  • Patent number: 10909291
    Abstract: A method for increasing coverage of a scan test, executed by at least one processor, includes following operations: analyzing a first netlist file and a second netlist file to acquire a change of a circuit structure, in which the first netlist file corresponds to a first scan chain circuitry, and the second netlist file corresponds to a second scan circuitry wherein the second netlist file is generated by processing the first netlist file with executing an engineering change order (ECO); repairing the second scan chain circuitry according to at least one predetermined criterion; evaluating a candidate node of the repaired second scan chain circuitry, to connect a new flip flop circuit generated after executing the ECO to the candidate node; and storing the second netlist file being processed as a third netlist file, to fabricate an integrated circuit.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: February 2, 2021
    Assignees: GLOBAL UNICHIP CORPORATION, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Tse-Wei Wu, Yu-Hsun Su, Chen-Yuan Kao, Min-Hsiu Tsai
  • Patent number: 10892794
    Abstract: A multi-channel transmission device is provided. The multi-channel transmission device includes a clock generator and a plurality of transmitters. The clock generator generates input clocks. The transmitters operate based on spread spectrum clocks respectively. Each of the transmitters comprises a phase rotator. The phase rotator provides a selection signal and an interpolation signal of multiple bits. The phase rotator selects two of the input clocks as a first selected input clock and a second selected input clock according to the selection signal, and generate a spread spectrum clock according to the interpolation signal, the first selected input clock and the second selected input clock.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: January 12, 2021
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Chung T. Chen, Chia-Hsiang Chang, Wen-Lung Tu
  • Patent number: 10892238
    Abstract: A circuit structure including a first signal line and a second signal line is provided. The first signal line includes a first line segment, a first ball grid array pad, and a first through hole disposed between the first line segment and the first ball grid array pad. The second signal line includes a second line segment, a second ball grid array pad, and a second through hole disposed between the second line segment and the second ball grid array pad. In a plan view, a line connecting the center of the first ball grid array pad and the center of the second ball grid array pad has a first distance, a line connecting the center of the first through hole and the center of the second through hole has a second distance, and the first distance is less than the second distance. A chip package is also provided.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 12, 2021
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Hung Lin, Sheng-Fan Yang, Yu-Cheng Sun