Patents Assigned to Intel Corporation
  • Patent number: 11954501
    Abstract: A scheme for restoring a password-protected endpoint device (e.g., a memory device) of a computer system to an operational state from a low power state without requiring user input of a device password. A password received for unlocking the device during a boot process is stored in a secure memory. The password-protected endpoint device subsequently enters the low power state, causing it to lock. During a transition from the low power state to an operational state, it is detected that the password for the endpoint device is stored in the secure memory. The password is fetched from the secure memory and used to unlock the endpoint device, thereby restoring the endpoint device to an operational state.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Pannerkumar Rajagopal, Bhavana Shankarappa, Kiran Mahesh Eriki
  • Patent number: 11957066
    Abstract: Embodiments of the present disclosure describe quantum circuit assemblies that include one or more filter modules integrated in a package with a quantum circuit component having at least one qubit device. Integration may be such that both the quantum circuit component and the filter module(s) are at least partially inside a chamber formed by a radiation shield structure that is configured to attenuate electromagnetic radiation incident on the quantum circuit component and the filter module(s). Placing filter modules under the protection provided by the radiation shield structure may boost coherence of the qubits. Some example filter modules may include filter(s) configured to convert electromagnetic radiation to heat and filter(s) configured to perform bandpass filtering. Modular blocks of in-line filters inside the shielded environment may allow to route signals to the quantum circuit component with reduced noise and speed up installation of a complete quantum computer.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Florian Luthi, Lester Lampert
  • Patent number: 11955377
    Abstract: Approaches based on differential hardmasks for modulation of electrobucket sensitivity for semiconductor structure fabrication, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for an integrated circuit includes forming a hardmask layer above an inter-layer dielectric (ILD) layer formed above a substrate. A plurality of dielectric spacers is formed on the hardmask layer. The hardmask layer is patterned to form a plurality of first hardmask portions. A plurality of second hardmask portions is formed alternating with the first hardmask portions. A plurality of electrobuckets is formed on the alternating first and second hardmask portions and in openings between the plurality of dielectric spacers. Select ones of the plurality of electrobuckets are exposed to a lithographic exposure and removed to define a set of via locations.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Robert L Bristol, James M. Blackwell, Rami Hourani, Marie Krysak
  • Patent number: 11953962
    Abstract: In one embodiment, a processor includes: a plurality of cores each comprising a multi-threaded core to concurrently execute a plurality of threads; and a control circuit to concurrently enable at least one of the plurality of cores to operate in a single-threaded mode and at least one other of the plurality of cores to operate in a multi-threaded mode. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Daniel J. Ragland, Guy M. Therien, Ankush Varma, Eric J. DeHaemer, David T. Mayo, Ariel Gur, Yoav Ben-Raphael, Mark P. Seconi
  • Patent number: 11955426
    Abstract: A microelectronics package comprising a substrate, the substrate comprising a dielectric and at least first and second conductor level within the dielectric, where the first and second conductor levels are separated by at least one dielectric layer. The microelectronics package comprises an inductor structure that comprises a magnetic core. The magnetic core is at least partially embedded within the dielectric. The inductor structure comprises a first trace in the first conductor level, a second trace in the second conductor level, and a via interconnect connecting the first and second traces. The first trace and the second trace extend at least partially within the magnetic core.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Huong Do, Kaladhar Radhakrishnan, Krishna Bharath, Yikang Deng, Amruthavalli P. Alur
  • Patent number: 11954063
    Abstract: Described herein is a graphics processing unit (GPU) configured to receive an instruction having multiple operands, where the instruction is a single instruction multiple data (SIMD) instruction configured to use a bfloat16 (BF16) number format and the BF16 number format is a sixteen-bit floating point format having an eight-bit exponent. The GPU can process the instruction using the multiple operands, where to process the instruction includes to perform a multiply operation, perform an addition to a result of the multiply operation, and apply a rectified linear unit function to a result of the addition.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Subramaniam Maiyuran, Shubra Marwaha, Ashutosh Garg, Supratim Pal, Jorge Parra, Chandra Gurram, Varghese George, Darin Starkey, Guei-Yuan Lueh
  • Patent number: 11955431
    Abstract: Semiconductor packages, and methods for making the semiconductor packages, having an interposer structure with one or more interposer and an extension platform, which has an opening for placing the interposer, and the space between the interposer and the extension platform is filled with a polymeric material to form a unitary interposer-extension platform composite structure. A stacked structure may be formed by at least a first semiconductor chip coupled to the interposer and at least a second semiconductor chip coupled to the extension platform, and at least one bridge extending over the space that electrically couples the extension platform and the interposer. The extension platform may include a recess step section that may accommodate a plurality of passive devices to reduced power delivery inductance loop for the high-density 2.5D and 3D stacked packaging applications.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Jenny Shio Yin Ong, Seok Ling Lim, Bok Eng Cheah, Jackson Chung Peng Kong, Saravanan Sethuraman
  • Patent number: 11954356
    Abstract: Apparatus, method, and system for efficiently identifying and tracking cold memory pages are disclosed. The apparatus in one embodiment includes one or more processor cores to access memory pages stored in the memory by issuing access requests to the memory and a page index bitmap to track accesses made by the one or more processor cores to the memory pages. The tracked accesses are usable to identify infrequently-accessed memory pages, where the infrequently-accessed memory pages are removed from the memory and stored in a secondary storage.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Qiuxu Zhuo, Anthony Luck
  • Patent number: 11954062
    Abstract: Embodiments described herein provide techniques to enable the dynamic reconfiguration of memory on a general-purpose graphics processing unit. One embodiment described herein enables dynamic reconfiguration of cache memory bank assignments based on hardware statistics. One embodiment enables for virtual memory address translation using mixed four kilobyte and sixty-four kilobyte pages within the same page table hierarchy and under the same page directory. One embodiment provides for a graphics processor and associated heterogenous processing system having near and far regions of the same level of a cache hierarchy.
    Type: Grant
    Filed: March 14, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Joydeep Ray, Niranjan Cooray, Subramaniam Maiyuran, Altug Koker, Prasoonkumar Surti, Varghese George, Valentin Andrei, Abhishek Appu, Guadalupe Garcia, Pattabhiraman K, Sungye Kim, Sanjay Kumar, Pratik Marolia, Elmoustapha Ould-Ahmed-Vall, Vasanth Ranganathan, William Sadler, Lakshminarayanan Striramassarma
  • Patent number: 11954360
    Abstract: Systems, apparatuses and methods may provide for technology that programs a plurality of seed values into a plurality of linear feedback shift registers (LFSRs), wherein the plurality of LFSRs correspond to a data word (DWORD) and at least two of the plurality of seed values differ from one another. The technology may also train a link coupled to the plurality of LFSRs, wherein the plurality of seed values cause a parity bit associated with the DWORD to toggle while the link is being trained. In one example, the technology also automatically selects the plurality of seed values based on one or more of an expected traffic pattern on the link (e.g., after training) or a deskew constraint associated with the link.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Narasimha Lanka, Kuljit Bains, Lohit Yerva
  • Patent number: 11956156
    Abstract: Methods and apparatus for dynamic offline end-to-end packet processing based on traffic class. An end-to-end connection is set up between an application on a client including a processor and host memory and an application on a remote server. An offline packet buffer is allocated in host memory. While the processor and/or a core on with the client application is executed is in a sleep state, the client is operated in an interrupt-less and polling-less mode as applied to a predetermined traffic class. Under the mode, a Network Interface Controller (NIC) at the client receives network traffic from the remote server and determines whether the network traffic is associated with the predetermined traffic class. When it is, the NIC writes packet data extracted from the network traffic to an offline packet buffer. Descriptors are generated and provided to the NIC to inform the NIC of the location and size of the offline packet buffer.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Akhilesh S. Thyagaturu, Vinodh Gopal
  • Patent number: 11954466
    Abstract: Methods, apparatus, systems, and articles of manufacture are disclosed that perform machine learning-guided compiler optimizations for register-based hardware architectures. Examples disclosed herein include a non-transitory computer readable medium comprising instructions that, when executed, cause a machine to at least select a register-based compiler transformation to apply to source code at a current position in a search tree, determine whether the search tree is in need of pruning based on an output of a query to a machine learning (ML) model, in response to determining the search tree is in need of pruning, prune the search tree at the current position, in response to applying the selected register-based compiler transformation to the source code, generate a code variant, calculate a score associated with the source code at the current position in the search tree, and update parameters of the machine learning (ML) model to include the calculated score.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Anand Venkat, Justin Gottschlich, Niranjan Hasabnis
  • Patent number: 11955482
    Abstract: Integrated circuit structures having high phosphorous dopant concentrations are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each of the epitaxial structures of the first and second source or drain structures includes silicon and phosphorous, the phosphorous having an atomic concentration in a core region of the silicon greater than an atomic concentration in a peripheral region of the silicon.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Robert Ehlert, Timothy Jen, Alexander Badmaev, Shridhar Hegde, Sandrine Charue-Bakker
  • Patent number: 11954528
    Abstract: Technologies for dynamically sharing remote resources include a computing node that sends a resource request for remote resources to a remote computing node in response to a determination that additional resources are required by the computing node. The computing node configures a mapping of a local address space of the computing node to the remote resources of the remote computing node in response to sending the resource request. In response to generating an access to the local address, the computing node identifies the remote computing node based on the local address with the mapping of the local address space to the remote resources of the remote computing node and performs a resource access operation with the remote computing node over a network fabric. The remote computing node may be identified with system address decoders of a caching agent and a host fabric interface. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Francesc Guim Bernat, Kshitij A. Doshi, Daniel Rivas Barragan, Alejandro Duran Gonzalez, Harald Servat
  • Patent number: 11956104
    Abstract: Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including one or more antennas configured to receive an RF signal and an ADC system. The ADC system includes a 1-bit ADC configured to receive the RF signal, and an ADC controller circuitry configured to measure a number of positive samples in the received RF signal for a plurality of thresholds of the 1-bit ADC, estimate receive signal power associated with the received RF signal based on the measured number of positive samples, determine a direct current (DC) offset in the received RF signal using the estimated received signal power, and adjust the received RF signal based on the determined DC offset.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Oner Orhan, Hosein Nikopour, Mehnaz Rahman, Ivan Simoes Gaspar, Shilpa Talwar, Stefano Pellerano, Claudio Da Silva, Namyoon Lee, Yo Seb Jeon, Eren Sasoglu
  • Patent number: 11955343
    Abstract: Two-stage bake photoresists with releasable quenchers for fabricating back end of line (BEOL) interconnects are described. In an example, a photolyzable composition includes an acid-deprotectable photoresist material having substantial transparency at a wavelength, a photo-acid-generating (PAG) component having substantial transparency at the wavelength, and a base-generating component having substantial absorptivity at the wavelength.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Marie Krysak, James M. Blackwell, Florian Gstrein, Kent N. Frasure
  • Patent number: 11955448
    Abstract: Embodiments disclosed herein include electronic packages. In an embodiment, an electronic package comprises a package substrate and a bridge substrate embedded in the package substrate. In an embodiment, first pads are over the package substrate, where the first pads have a first pitch, and second pads are over the bridge substrate, where the second pads have a second pitch that is smaller than the first pitch. In an embodiment, a barrier layer is over individual ones of the second pads. In an embodiment, reflown solder is over individual ones of the first pads and over individual ones of the second pads. In an embodiment, a first standoff height of the reflown solder over the first pads is equal to a second standoff height of the reflown solder over the second pads.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Jung Kyu Han, Hongxia Feng, Xiaoying Guo, Rahul N. Manepalli
  • Patent number: 11955965
    Abstract: Technologies for a high-voltage transmission gate are disclosed. In the illustrative embodiment, a companion chip is connected to a quantum processor. The companion chip provides voltages to gates of qubits on the quantum processor. The companion chip includes one or more high-voltage transmission gates that can be used to charge capacitors linked to gates of qubits on the quantum processor. The transmission gate includes transistors with a breakdown voltage less than a range of input and output voltages of the transmission gate. Control circuitry on the companion chip controls the voltages applied to transistors of the transmission gate to ensure that the voltage differences across the terminals of each transistor is below a breakdown voltage.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Sushil Subramanian, Stefano Pellerano, Todor Mladenov, JongSeok Park, Bishnu Prasad Patra
  • Patent number: 11955728
    Abstract: Aspects of the embodiments are directed to an on-chip loop antenna and methods of manufacturing the same. In some embodiments, the on-chip loop antenna is in an integrated circuit (IC) die. The IC die comprises metal loops substantially centered around a core region of the IC die in a metallization stack of the IC die, a dielectric between spaces of the metal loops, an electric circuit in the core region electrically connected to the metal loops with an interconnect, and a ground plane in the metallization stack electrically connected to the loops with a first plurality of vias and to the electric circuit with a second plurality of vias. The first plurality of vias is different from the second plurality of vias, and the electric circuit includes an inductor. In some embodiments, the on-chip loop antenna can be carried by a semiconductor package.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Nir Weisman, Omer Asaf, Eyal Goldberger
  • Patent number: 11954563
    Abstract: Apparatus and method for error reduction in distributed quantum computing via fusing-and-decomposing gates. For example, one embodiment of an apparatus comprises: a quantum module comprising a plurality of qubits; unitary generation logic to combine a group of quantum gates to form at least one unitary operation; decomposition logic to decompose the unitary operation into multiple alternative gate sequences comprising either exact gate sequences or approximate gate sequences; and selection logic to evaluate the multiple alternative gate sequences based on a cost function to identify at least one of the gate sequences.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: April 9, 2024
    Assignee: INTEL CORPORATION
    Inventors: Nicolas Sawaya, Anne Matsuura, Justin Hogaboam