Abstract: A semiconductor device structure may include a substrate having a substrate base comprising a first dopant type; a semiconductor layer disposed on a surface of the substrate base, the semiconductor layer comprising a second dopant type and having an upper surface; and a semiconductor plug assembly comprising a semiconductor plug disposed within the semiconductor layer, the semiconductor plug extending from an upper surface of the semiconductor layer and having a depth at least equal to a thickness of the semiconductor layer, the semiconductor plug having a first boundary, the first boundary formed within the semiconductor layer, and having a second boundary, the second boundary formed within the semiconductor layer and disposed opposite the first boundary, wherein the first boundary and second boundary extend perpendicularly to the surface of the substrate base.
Type:
Grant
Filed:
November 17, 2020
Date of Patent:
June 27, 2023
Assignee:
Littelfuse, Inc.
Inventors:
Ader Shen, Ting-Fung Chang, James Lu, Wayne Lin
Abstract: A relay circuit, including a solid state relay switch, connected to a first relay line and to a charging capacitor, and connected to a second relay line. The relay circuit may also include a solid state relay control circuit, coupled between the charging capacitor and the solid state relay switch. The solid state relay control circuit may include a voltage detection circuit, having an input coupled to an output of the charging capacitor, and having an output arranged to generate a LOW voltage signal when a voltage level of the charging capacitor is below a low threshold value. The solid state relay control circuit may also include a zero crossing circuit, coupled to the first relay line and the second relay line, and having an output to generate a clock signal when a zero crossing event takes place between the first relay line and the second relay line.
Abstract: Provided are waveguide sensors and position sensing systems. In some embodiments, a position sensing system may include a waveguide configured to receive and transmit a pulse, and a magnet moveable relative to the waveguide. The waveguide may include a first core layer and a second core layer, a magnetic layer between the first and second core layers, and a conductive winding around the first core layer, the second core layer, and the magnetic layer. The position sensing system may further include a first substrate layer above the conductive winding and a second substrate layer below the conductive winding.
Abstract: A temperature-sensing tape including a flexible, electrically insulating substrate, a plurality of temperature-sensing elements disposed on the substrate, wherein a temperature-sensing element includes a bimetallic switch.
Type:
Application
Filed:
December 15, 2021
Publication date:
June 15, 2023
Applicant:
Littelfuse, Inc.
Inventors:
Martin G. Pineda, Sergio Fuentes Godinez, Yuriy Borisovich Matus
Abstract: Provided herein is are quick-assembly plug connectors. In some embodiments, an assembly may include a body, and a contact carrier within the body, the contact carrier including a main body including a plurality of openings each operable to receive a contact, and a plurality of legs extending from the main body, each of the plurality of legs coupled with the body.
Abstract: A novel heater is disclosed for a temperature sensitive actuator. The heater is a polymeric positive temperature coefficient (PPTC) device consisting of conductive filler and semi-crystalline polymer. The PPTC heater is strategically designed to have a predetermined self-regulation temperature suited to whatever application utilizes the heater. Physical characteristics of the PPTC heater, such as gap width and thickness, enable the current flow through the heater to be strategically controlled.
Abstract: A power semiconductor device may include a junction termination region, bounded by a side edge of a semiconductor substrate. The junction termination region may include a substrate layer of a first dopant type, a well layer of a second dopant type, a conductive trench assembly having a first set of conductive trenches, in the junction termination region, and extending from above the substrate layer through the well layer; and a metal layer, electrically connecting the conductive trench assembly to the well layer. The metal layer may include a set of inner metal contacts, electrically connecting a set of inner regions of the well layer to a first set of trenches of the conductive trench assembly; and an outer metal contact, electrically connecting an outer region of the well layer to a second set of conductive trenches of the conductive trench assembly, wherein the outer region borders the side edge.
Abstract: A resistance heater may include a polymer positive temperature coefficient (PPTC) material, arranged in a ring shape that defines a heater body; and an electrode assembly, comprising two or more electrodes arranged in contact with the heater body at two or more locations, wherein PPTC material comprises: a polymer matrix, the polymer matrix defining a PPTC body; and a conductive filler component, disposed in the polymer matrix.
Abstract: A novel fuse assembly design utilizes a fuse body, a single-piece terminal assembly and a two-piece endbell. The terminal assembly is disposed within the fuse body and includes first and second opposing surfaces with a fuse element extending between a first terminal and a second terminal. The endbell, to be connected to the fuse body, includes first and second endbell portions. Formed within the first endbell portion is a first receptacle and extending from the first endbell portion is a first protrusion. Formed within the second endbell portion is a second receptacle and extending from the second endbell portion is a second protrusion. When the two endbell portions are fastened to one another with the terminal assembly sandwiched between them, the first protrusion engages the second receptacle and the second protrusion engages the first receptacle.
Type:
Grant
Filed:
November 18, 2021
Date of Patent:
May 16, 2023
Assignee:
Littelfuse, Inc.
Inventors:
David Arthur Burns, Jon Richard, Ganesh Nagaraj Chennakesavelu, Derek Lasini, Scott Faust
Abstract: A magnetic sensing system includes a sensor and three magnets. The sensor is located within an appliance housing, the appliance having three moving components. The first magnet is disposed in a first orientation adjacent the first moving component, with the position of the first magnet changing in concert with movement of the first moving component. The second magnet is disposed in a second orientation adjacent the second moving component, with the position of the second magnet changing in concert with movement of the second moving component. The third magnet is disposed in a third orientation adjacent the third moving component, with the position of the third magnet changing in concert with movement of the third moving component. The sensor detects displacement of the first moving component, the second moving component, or the third moving component.
Type:
Application
Filed:
May 26, 2022
Publication date:
April 27, 2023
Applicant:
Littelfuse, Inc.
Inventors:
Todd Sabotta, Seong-Jae Lee, Stephen E. Knapp
Abstract: A miniature circuit breaker for providing short circuit and overload protection is disclosed herein. The miniature circuit breaker features a field effect transistor (FET), which may be a depletion mode metal oxide semiconductor FET (D MOSFET), a junction field-effect transistor (JFET), or a silicon carbide JFET, the FET being connected to a bi-metallic switch, where the bi-metallic switch acts as a temperature sensing circuit breaker. In combination, the D MOSFET and bi-metallic switch are able to limit current to downstream circuit components, thus protecting the components from damage.
Abstract: A fuse including a fuse body having a main body portion formed of a dielectric material, a plurality of arc chambers formed in the main body portion, the arc chambers arranged in a matrix configuration, a conductor extending through the main body portion and intersecting the arc chambers, the conductor having bridge portions disposed within the arc chambers, the bridge portions being mechanically weaker than other portions of the conductor and configured to melt and separate upon the occurrence of an overcurrent condition in the fuse.
Abstract: An optical rain sensor including a plurality of light detecting elements and a plurality of peripheral light emitting elements disposed on a printed circuit board (PCB) and surrounding a central light emitting element disposed on the PCB, wherein, in a first mode of operation, the central light emitting element is configured to emit light beams toward the plurality of light detecting elements, and wherein, in a second mode of operation, each of the peripheral light emitting elements is configured to emit light beams toward the plurality of light detecting elements.
Type:
Grant
Filed:
March 17, 2020
Date of Patent:
April 11, 2023
Assignee:
Littelfuse, Inc.
Inventors:
Mindaugas Ketlerius, Mangirdas Rasiulis
Abstract: A reed switch including a cylindrical enclosure with two ends, a first blade and a second blade is disclosed. The first blade has a first lead, a first web, and a first contact, and the first web is bent at a first angle as compared to the first lead. The second blade has a second lead, a second web, and a second contact, and the second web is bent at a second angle as compared to the second lead. The first contact is disposed adjacent to the second contact with a gap between them.
Type:
Grant
Filed:
June 8, 2021
Date of Patent:
April 4, 2023
Assignee:
Littelfuse, Inc.
Inventors:
Richard Malabanan Tacla, Jordanuff Cabilan, Edwin Canido Aberin
Abstract: A polymeric positive temperature coefficient (PPTC) tank heater features a first conductive region, a heater body, and a second conductive region, forming a sandwich. The first conductive region includes a first conductive surface connected to a first lead and a second conductive surface connected to a second lead. The heater body is a PPTC polymer matrix including a conductive filler and a semi-crystalline polymer. The sandwich includes multiple heating elements connected in series and each heating element supplies a different resistance.
Abstract: A thermal sensor wire. The thermal sensor wire may include a thermal sensing portion extending along a wire axis of the thermal sensor wire; and a carrier portion, the carrier portion extending along the wire axis, adjacent to the thermal sensing portion, the thermal sensing portion comprising a polymer positive temperature coefficient (PPTC) material or a negative temperature coefficient (NTC) material.
Type:
Grant
Filed:
November 17, 2019
Date of Patent:
March 28, 2023
Assignee:
Littelfuse, Inc.
Inventors:
Yuriy Borisovich Matus, Martin G. Pineda, Sergio Fuentes
Abstract: A polymer positive temperature coefficient (PPTC) material may include a polymer matrix, the polymer matrix defining a PPTC body; and a graphene filler component, disposed in the polymer matrix, wherein the graphene filler component comprises a plurality of graphene particles aligned along a predetermined plane of the PPTC body.
Abstract: A novel busbar, suitable for low-power applications, features a u-shaped extension having a male terminal that fits into and establishes electrical connection with a standard female terminal. The housing of an electrical box including the busbar is modified to receive the female terminal in such a way that Ingress Protection ratings of IP67 and IP69K are maintained within the electrical box. The busbar is not riveted to a thicker busbar terminating with a stud and lug nut, as in legacy configurations, thus being simpler and cheaper to manufacture. The female terminal, once connected to the busbar, is removable by inserting a tool into a dedicated opening within the housing.
Type:
Grant
Filed:
March 24, 2021
Date of Patent:
March 21, 2023
Assignee:
Littelfuse, Inc.
Inventors:
Dave G. Kotowski, Michael J. Skrzypczak
Abstract: Provided herein are methods for an improved bi-stable relay. In some embodiments, a method may include providing a core assembly within a housing, the core assembly comprising a plunger extending through a coil support structure. The method may further include winding a first coil and a second coil about a central section of the coil support structure, providing a first magnet and a first ferromagnetic plate at a first end of the coil support structure, and providing a second magnet and a second ferromagnetic plate at a second end of the coil support structure. In some embodiments, the method may further include activating the first coil or the second coil to move the plunger between a first position and a second position, wherein in the first position a circuit formed by a set of contacts is closed, and wherein in the second position the circuit is open.
Abstract: In one embodiment, a power semiconductor device may include a semiconductor substrate, wherein the semiconductor substrate comprises an active device region and a junction termination region. The power semiconductor device may also include a polysilicon layer, disposed over the semiconductor substrate. The polysilicon layer may include an active device portion, disposed over the active device region, and defining at least one semiconductor device; and a junction termination portion, disposed over the junction termination region, the junction termination portion defining a ring structure.