Patents Assigned to Northeastern University
  • Patent number: 10928382
    Abstract: A microfluidic device provides high throughput generation and analysis of defined three-dimensional cell spheroids with controlled geometry, size, and cell composition. The cell spheroids of the invention mimic tumor microenvironments, including pathophysiological gradients, cell composition, and heterogeneity of the tumor mass mimicking the resistance to drug penetration providing more realistic drug response. The device is used to test the effects of antitumor agents.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: February 23, 2021
    Assignee: Northeastern University
    Inventors: Tania Konry, Noa Cohen, Pooja Sabhachandani
  • Patent number: 10919262
    Abstract: Disclosed are multilayered aerogel nanocomposite materials, and methods of making and using them.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: February 16, 2021
    Assignee: Northeastern University
    Inventors: Hongli Zhu, Lei Yang
  • Patent number: 10912480
    Abstract: A sensor system and process for measuring electromagnetic activity of a brain are provided. The system and process employ a sensor assembly having a plurality of electrodes arranged in a closely spaced arrangement and a processor to determine a weighted average of the signals indicative of an electric field generated by electromagnetic activity of the brain. The system provides a medical body area network of a subject including one or more of the sensor assemblies and one or more additional sensors, which may be within a smartphone or other wearable device.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: February 9, 2021
    Assignee: Northeastern University
    Inventors: Srinivas Sridhar, Yury Petrov, Ozgur Yavuzcetin, Kaushik Chowdhury
  • Patent number: 10914660
    Abstract: An apparatus and a method are provided for selectively and rapidly applying heat to a nanoscale environment in a controlled manner. The technology utilizes laser irradiation of a solid state material to heat a nanoscale point of interest by an optothermal effect. The technology can be used to the tip of an atomic force microscope, a spot on a flat surface, or a nanopore, or molecules in their vicinity. The apparatus and method are capable of rapidly scanning the temperature of a nanoscale object such as a molecule or biomolecular complex and to interrogate properties of the object at high throughput. The methods can be used in nanofabrication processes or to drive single molecule chemistry.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: February 9, 2021
    Assignee: Northeastern University
    Inventors: Meni Wanunu, Hirohito Yamazaki
  • Patent number: 10907046
    Abstract: Provided herein are compounds that are able to bind metal ions (e.g., free metal ions or metal ions bound to low affinity ligands) in a sample or subject. Also provided herein are methods of using the compounds for chelating metal ions and for the treatment of diseases associated with abnormal levels of metal ions. Methods of preparing the compounds and pharmaceutical compositions are also provided.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 2, 2021
    Assignees: The General Hospital Corporation, Northeastern University
    Inventors: Hak Soo Choi, Jonghan Kim, Georges El Fakhri
  • Patent number: 10898100
    Abstract: Electrical impedance myography (EIM) can be used for the assessment and diagnosis of muscular disorders. EIM includes applying an electrical signal to a region of tissue and measuring a resulting signal. A characteristic of the region of tissue is determined based on the measurement. Performing EIM at different frequencies and/or different angular orientations with respect to a muscle can aid in the assessment and diagnosis. Devices are described that facilitate assessment and diagnosis using EIM.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: January 26, 2021
    Assignees: Beth Israel Deaconess Medical Center, Inc., Northeastern University
    Inventors: Seward B. Rutkove, Carl A. Shiffman, Ronald Aaron
  • Patent number: 10900067
    Abstract: Provided is a highly multiplex approach to disease condition diagnostics that combines nanopore sensing and nucleic acid nanoparticle (NANP) design and synthesis to detect multiple biomarkers to diagnose diseases. The system works by taking a sample containing biomarkers that is mixed with a plurality of nucleic acid nanoparticle (NANP) populations, with each population designed and synthesized to be able to detect a particular biomarker. Upon incubation, the mixture is used with nanopore measurements, with recordings of the ionic current through the nanopore. The ionic current recordings are analyzed, which determines the presence and/or concentration of biomarkers in the sample.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: January 26, 2021
    Assignees: The Board of Trustees of the University of Illinois, University of North Carolina—Charlotte, Northeastern University
    Inventors: Aleksei Aksimentiev, Kirill A. Afonin, Meni Wanunu
  • Patent number: 10888637
    Abstract: Methods and devices are described for using a controlled extensional strain to organize prefibrillar collagen and/or elastin solutions into an organized array of fibrils. The organized array of collagen fibrils produced by the disclosed methods and devices can be used for tissue engineering applications.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 12, 2021
    Assignee: Northeastern University
    Inventors: Jeffrey W. Ruberti, Jeffrey Paten
  • Patent number: 10872072
    Abstract: Described are devices, systems and techniques for implementing atomic memory objects in a multi-writer, multi-reader setting. In an embodiment, the devices, systems and techniques use maximum distance separable (MDS) codes, and may be specifically designed to optimize a total storage cost for a given fault-tolerance requirement. Also described is an embodiment to handle the case where some of the servers can return erroneous coded elements during a read operation.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 22, 2020
    Assignees: Massachusetts Institute of Technology, Northeastern University, University of Connecticut
    Inventors: Muriel Medard, Kishori Mohan Konwar, Prakash Narayana Moorthy, Nancy Ann Lynch, Erez Kantor, Alexander Allister Schwarzmann
  • Patent number: 10849503
    Abstract: A system and method is provided for transmitting signals ultrasonically among a network of implantable and wearable biological devices. The devices includes one or more implantable nodes, which include a sensing and/or actuating unit, at least one gateway node, and at least one access point node. Ultrasonic signals can be transmitted through the body by the implantable nodes to and from the gateway node, for transmission to and from the access point node. The access point node can be connected to the Internet. In this manner, remote instructions can be transmitted to the implantable nodes and data obtained at the implantable nodes can be transmitted to remote sites.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 1, 2020
    Assignee: Northeastern University
    Inventors: Tommaso Melodia, Giuseppe Enrico Santagati
  • Patent number: 10854885
    Abstract: A simplified and efficient method for preparing non-noble metal catalysts for oxygen reduction reaction (ORR) based on nitrogen containing metal organic framework (MOF) is provided. The method includes formation of a first MOF product through a mechano-chemical reaction between a first transition metal compound and a first organic ligand in the presence of a catalyst. It further includes formation of a second MOF product incorporating a second transition metal and a second organic ligand into the first-MOF product. The second MOF product is converted into an electrocatalyst via pyrolysis, and optionally post-treatment. The electrocatalysts are applicable in various electrochemical systems, including oxygen depolarized cathodes (ODC) for chlorine evolution.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: December 1, 2020
    Assignee: Northeastern University
    Inventors: Jingkun Li, Sanjeev Mukerjee
  • Patent number: 10848071
    Abstract: A universal power converter of the present application may include a link stage between an input stage and an output stage that operates at a higher frequency than the frequency of the input power source. As a result, a more compact capacitor may be used, thus reducing the size of the power converter. In some embodiments, the link stage may be a partially resonant link that permits zero current switching (ZCS). ZCS operation may reduce switching losses during operation. Universal power converters of the present application utilizing ZCS may be implemented using naturally commutated switches, such as silicon controlled rectifiers (SCRs), instead of transistor switches. Such power converters utilizing SCRs may be more reliable than power converters utilizing transistor switches. Additionally, control circuitry required to operate such power converters may be simplified. Accordingly, a more compact, efficient, and reliable universal power converter may be achieved.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: November 24, 2020
    Assignees: Northeastern University, The Board of Trustees of the University of Illinois
    Inventor: Mahshid Amirabadi
  • Patent number: 10835604
    Abstract: Compositions and methods for the radiological and immunotherapeutic treatment of cancer are provided. Metallic nanoparticles conjugated with an immunoadjuvant are dispersed within a biodegradable polymer matrix that can be implanted in a patient and released gradually. The implant may be configured as, or be a component of, brachytherapy spacers and applicators, or radiotherapy fiducial markers. The composition may be combined with marginless radiotherapy, allowing for lower doses of radiation and enhancing the immune response against cancer, including at non-irradiated sites.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 17, 2020
    Assignees: Northeastern University, Dana-Farber Cancer Institute, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Wilfred Ngwa, Rajiv Kumar, Gerassimos Makrigiorgos, Srinivas Sridhar, Stephanie Dougan
  • Patent number: 10834854
    Abstract: In an embodiment, a process for making a thermal interface article comprises shaping a flowable composite comprising a flowable matrix composition, a plurality of magnetic, thermally conductive particles having an average length greater than a thickness or diameter, wherein the plurality of magnetic, thermally conductive particles have magnetic or superparamagnetic nanoparticles attached thereto, to provide the flowable composite in a shape comprising a first surface and an opposing second surface, and having a Z-axis perpendicular to the first surface and the opposing second surface; subjecting the flowable composite to a rotating magnetic field and to a vibrational force in an amount and for a time effective to align the average length of the plurality of magnetic, thermally conductive particles along the Z-axis; and solidifying the flowable matrix composition to provide the thermal interface, wherein the thermal interface has a Z-direction thermal conductivity of at least 1.0 W/mK.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: November 10, 2020
    Assignee: Northeastern University
    Inventors: Li Zhang, Randall Morgan Erb, Jabulani R. T. Barber, Anvesh Gurijala, Qiaochu Han
  • Patent number: 10825219
    Abstract: Embodiments provide methods and systems for image generation through use of adversarial networks. An embodiment trains an image generator comprising (i) a generator implemented with a first neural network configured to generate a fake image based on a target segmentation, (ii) a discriminator implemented with a second neural network configured to distinguish a real image from a fake image and output a discrimination result as a function thereof and (iii) a segmentor implemented with a third neural network configured to generate a segmentation from the fake image. The training includes (i) operating the generator to output the fake image to the discriminator and the segmentor and (ii) iteratively operating the generator, discriminator, and segmentor during a training period, whereby the discriminator and generator train in an adversarial relationship with each other and the generator and segmentor train in a collaborative relationship with each other.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 3, 2020
    Assignee: Northeastern University
    Inventors: Yun Fu, Songyao Jiang
  • Patent number: 10815582
    Abstract: Damascene templates have two-dimensionally patterned raised metal features disposed on an underlying conductive layer extending across a substrate. The templates are topographically flat overall, and the patterned conductive features establish micron-scale and nanometer-scale patterns for the assembly of nanoelements into nanoscale circuits and sensors. The templates are made using microfabrication techniques together with chemical mechanical polishing. These templates are compatible with various directed assembly techniques, including electrophoresis, and offer essentially 100% efficient assembly and transfer of nanoelements in a continuous operation cycle. The templates can be repeatedly used for transfer of patterned nanoelements thousands of times with minimal or no damage, and the transfer process involves no intermediate processes between cycles. The assembly and transfer processes employed are carried out at room temperature and pressure and are thus amenable to low cost, high-rate device production.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 27, 2020
    Assignee: Northeastern University
    Inventors: Ahmed Busnaina, Hanchul Cho, Sivasubramanian Somu, Jun Huang
  • Patent number: 10818952
    Abstract: Lignin-based electrolytes and flow battery cells and systems for use with lignin-based electrolytes are disclosed.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 27, 2020
    Assignee: Northeastern University
    Inventors: Hongli Zhu, Jonathan Hamel
  • Patent number: 10812365
    Abstract: Network architectures and methods including addressing and dynamic network topology construction schemes that guarantee maximally efficient and scalable routing are disclosed herein. The network architectures and methods introduce a new approach to network design. The network architectures and methods include an addressing scheme based on geographic position of network nodes, and a network topology construction scheme based on the addressing scheme and that can reproduce properties of the existing Internet topology. A routing algorithm for the network architecture is shown to be maximally scalable and efficient. According to an example embodiment, a network includes a plurality of nodes, where each node has a network address based on a latitude of a location of the node, a longitude of the location of the node, and a centrality of the location of the node.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: October 20, 2020
    Assignee: Northeastern University
    Inventors: Dmitri Krioukov, Ivan Voitalov
  • Patent number: 10802016
    Abstract: Platform technology involving aqueous microdroplet reaction vessels created, arrayed, and characterized by imaging microscopy in a microfluidic device are applied to a wide variety of bioassays involving the detection and phenotypic characterization of single cells. The bioassays include the rapid and automated detection of microbial pathogens and their antibiotic sensitivity from patient samples as well as the characterization of immune responses using a patient's own cells, including the killing of tumor cells.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 13, 2020
    Assignee: Northeastern University
    Inventors: Tania Konry, Pooja Sabhachandani, Saheli Sarkar
  • Patent number: 10799604
    Abstract: A method of detecting migration of tumor cells is provided by implanting in a region of tumor cells one or more implants having a matrix material of a biocompatible and biodegradable polymer, and a plurality of nanoparticles dispersed within the matrix material and functionalized to bind tumor cells. Nanoparticles bound to the tumor cells that have migrated out of the region can be detected by various imaging modalities. The implant can be in the shape of a brachytherapy spacer or radiotherapy fiducial maker or can be a coating on a brachytherapy spacer or fiducial marker. A method of treating cancer is provided by implanting one or more brachytherapy spacers or fiducial markers including the matrix material and an anti-cancer therapeutic agent dispersed within the matrix material.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: October 13, 2020
    Assignees: Northeastern University, Dana-Farber Cancer Institute, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Rajiv Kumar, Srinivas Sridhar, Wilfred Ngwa, Robert Cormack, Gerassimos Makrigiorgos