Patents Assigned to Northeastern University
  • Patent number: 11226951
    Abstract: Described are devices, systems and techniques for implementing atomic memory objects in a multi-writer, multi-reader setting. In an embodiment, the devices, systems and techniques use maximum distance separable (MDS) codes, and may be specifically designed to optimize a total storage cost for a given fault-tolerance requirement. Also described is an embodiment to handle the case where some of the servers can return erroneous coded elements during a read operation.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: January 18, 2022
    Assignees: Massachusetts Institute of Technology, Northeastern University, University of Connecticut
    Inventors: Muriel Medard, Kishori Mohan Konwar, Prakash Narayana Moorthy, Nancy Ann Lynch, Erez Kantor, Alexander Allister Schwarzmann
  • Patent number: 11219387
    Abstract: Provided herein are devices (e.g., electrochemical sensors useful for detecting volatile organic compounds associated with certain diseases or conditions and/or diagnosing certain diseases or conditions). The devices comprise one or more layers of metal on a layer of silicon, and a layer of molecularly imprinted polymer in electrical communication with the one or more layers of metal, wherein the one or more layers of metal are each independently selected from a layer of chromium, platinum, gold, nickel, cobalt, tungsten, rhodium, iridium, silver, tin, titanium or tantalum, or an alloy thereof. Methods of using the devices (e.g., to detect one or more analytes in a sample, to detect and/or diagnose a disease or condition in a subject), and methods of making the devices are also provided.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 11, 2022
    Assignee: Northeastern University
    Inventors: Nian Xiang Sun, Shadi Emam, Adam Keith Ekenseair
  • Patent number: 11220756
    Abstract: A variety of homogeneous or layered hybrid nanostructures are fabricated by electric field-directed assembly of nanoelements. The nanoelements and the fabricated nanostructures can be conducting, semi-conducting, or insulating, or any combination thereof. Factors for enhancing the assembly process are identified, including optimization of the electric field and combined dielectrophoretic and electrophoretic forces to drive assembly. The fabrication methods are rapid and scalable. The resulting nanostructures have electrical and optical properties that render them highly useful in nanoscale electronics, optics, and biosensors.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 11, 2022
    Assignee: Northeastern University
    Inventors: Ahmed Busnaina, Cihan Yilmaz, TaeHoon Kim, Sivasubramanian Somu
  • Patent number: 11222437
    Abstract: Non-contact methods and systems are disclosed for estimating an in-bed human pose. The method includes the steps of: (a) capturing thermal imaging data of a human subject lying on a bed using a long wavelength infrared camera positioned above the human subject; (b) transmitting the thermal imaging data to a computer system; and (c) processing the thermal imaging data by the computer system using a model to estimate the pose of the human subject, the model comprising a machine learning inference model trained on a training dataset of a plurality of in-bed human poses.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 11, 2022
    Assignee: Northeastern University
    Inventors: Sarah Ostadabbas, Shuangjun Liu
  • Patent number: 11214578
    Abstract: Disclosed are compounds of general formulas I-III that may be used to inhibit the action of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL) or dual FAAH/MAGL.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: January 4, 2022
    Assignee: Northeastern University
    Inventors: Alexandros Makriyannis, Vidyanand G. Shukla, Shakiru O. Alapafuja
  • Publication number: 20210402507
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a titanium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. This WAAM method completely breaks dendritic structures and refines grains in the WAAM process of the titanium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Application
    Filed: January 17, 2020
    Publication date: December 30, 2021
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Changshu HE, Jingxun WEI, Ying LI, Zhiqiang ZHANG, Ni TIAN, Gaowu QIN
  • Publication number: 20210402506
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a magnesium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. The present disclosure completely breaks dendritic structures and refines grains in the WAAM process of the magnesium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Application
    Filed: January 17, 2020
    Publication date: December 30, 2021
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin
  • Patent number: 11211187
    Abstract: A composite magnetic material has a plurality of grains having a magnetic ferrite phase, grain boundaries surrounding the grains, and a plurality of nanoparticles disposed at the grain boundaries. The nanoparticles of the composite material are both magnetic and electrically insulating, having a magnetic flux density of greater than about 100 mT and an electrical resistivity of at least about 108 Ohm-cm. Also provided is a method of making the composite material. The material is useful for making inductor cores of electronic devices.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: December 28, 2021
    Assignee: Northeastern University
    Inventors: Yajie Chen, Parisa Andalib, Vincent Harris
  • Patent number: 11211451
    Abstract: Techniques, materials, and structures for stretchable semiconductor nanomesh structures are described. In one embodiment, a stretchable semiconductor nanomesh structure may include a nanomesh formation of certain semiconductor material comprising a network of traces forming at least one opening between sidewalls of the nanomesh formation material, and a substrate configured to support the nanomesh formation material. Other embodiments are described.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: December 28, 2021
    Assignee: Northeastern University
    Inventors: Hui Fang, Xun Han, Kyung Jin Seo
  • Patent number: 11186690
    Abstract: Methods for creating nanostructured surface features on polymers and polymer composites involve application of low pressure during curing of solid polymer material from a solvent solution. The resulting nanoscale surface features significantly decrease bacterial growth on the surface. Polymer materials having the nanoscale structuring can be used in implantable medical devices to inhibit bacterial growth and infection.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: November 30, 2021
    Assignee: Northeastern University
    Inventor: Thomas J. Webster
  • Patent number: 11179494
    Abstract: Methods and devices for tissue remodeling and repair of collagenous tissues, including tendons, ligaments, and bone, as well as scalable connective tissue manufacturing, are provided. Collagen fibers are assembled by extensional strain-induced flow crystallization of collagen monomers. Extensional strain also drives the fusion of already formed short collagen fibrils to produce long-range, continuous fibers. Wearable devices for controlled tissue remodeling and wound healing deliver a tissue remodeling solution to a tissue repair site. The remodeling solution, together with appropriate application of strain to the tissue remodeling site, accelerate healing, prevent injury, and reduce scar formation.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: November 23, 2021
    Assignee: Northeastern University
    Inventors: Jeffrey A. Paten, Jeffrey W. Ruberti
  • Patent number: 11179770
    Abstract: An electromagnetic semi-continuous device comprises a crystallizer frame, an internal sleeve, a primary cooling water cavity, a secondary cooling water cavity and a tertiary cooling water cavity. An electromagnetic semi-continuous casting method comprises the steps of (1) adjusting angles of the adjustable spherical nozzles; (2) inserting a dummy bar head in a bottom of the internal sleeve; (3) feeding cooling water to the primary cooling water cavity and the secondary cooling water cavity, then spraying the cooling water to form primary cooling water and secondary cooling water, and exerting a magnetic field on the internal sleeve; (4) pouring the melts into the internal sleeve, starting the dummy bar head, and beginning to perform continuous casting; and (5) spraying tertiary cooling water through the tertiary cooling water cavity, so that casting billets reduce temperature until the continuous casting is completed.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 23, 2021
    Assignee: Northeastern University
    Inventors: Qichi Le, Yonghui Jia, Tong Wang, Lei Bao, Jian Hou, Jiashi Yan
  • Patent number: 11184783
    Abstract: A communications system provides for accurate fingerprinting of devices across a communications channel. A transmitter device modifies a physical layer signal prior to transmission as a function of signal modification parameters. A receiver device classifies a received physical layer signal and to outputs a classification indicator and a score. The receiver further analyzes the classification indicator and the score to produce an updated set of signal modification parameters provides the parameters to the transmitter device. The transmitter device, in turn, updates its signal modification parameters accordingly, thereby generating subsequent communications that more clearly indicate a fingerprint of the transmitter device.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 23, 2021
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Tommaso Melodia, Francesco Restuccia, Salvatore D'Oro
  • Patent number: 11180827
    Abstract: The present invention provides a method for preparing ferrovanadium alloys based on aluminothermic self-propagating gradient reduction and slag washing refining. The method includes the steps of (1) performing aluminothermic self-propagating gradient reduction; (2) performing heat preserving and smelting to obtain an upper layer alumina-based slag and a lower layer alloy melt; (3) jetting refining slags into the lower layer alloy melt, and performing stirring and slag washing refining; and (4) cooling the refined high-temperature melt to room temperature, and removing an upper layer smelting slag to obtain the ferrovanadium alloys.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: November 23, 2021
    Assignee: Northeastern University
    Inventors: Zhihe Dou, Tingan Zhang, Yan Liu, Guozhi Lv, Qiuyue Zhao, Liping Niu, Daxue Fu, Weiguang Zhang
  • Patent number: 11174288
    Abstract: Disclosed are peptides comprising an amphiphilic backbone and a cationic heparin-binding motif peptide. The peptides can be used in methods of antimicrobial treatment.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: November 16, 2021
    Assignee: Northeastern University
    Inventors: Run Chang, Keerthana Subramanian, Mian Wang, Thomas J. Webster
  • Patent number: 11176289
    Abstract: Techniques and apparatus for parameter error detection in a power system based on state estimation are described. In one embodiment, for example, an efficient process may be used to derive and compute only the necessary subset of the gain matrix and covariance matrix, thus avoiding the computation and storage of large dense matrices. The described efficient process can be applied either to single-scan or multiple-scan schemes. Other embodiments are described.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 16, 2021
    Assignee: Northeastern University
    Inventors: Ali Abur, Yuzhang Lin
  • Patent number: 11158783
    Abstract: A transformer including a piezoelectric plate and interdigital electrodes is provided. The interdigitated electrodes includes a plurality of conductive strips disposed over the piezoelectric plate. A cross-sectional Lamé mode resonance is excited in a cross sectional plane of the piezoelectric plate in response to input voltage applied through the interdigitated electrode, producing a voltage gain. A device including the aforementioned transformer is also provided.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: October 26, 2021
    Assignee: Northeastern University
    Inventors: Matteo Rinaldi, Cristian Cassella
  • Patent number: 11156914
    Abstract: Methods of fabricating a damascene template for electrophoretic assembly and transfer of patterned nanoelements are provided which do not require chemical mechanical polishing to achieve a uniform surface area. The methods include conductive layer fabrication using a combination of precision lithography techniques using etching or building up the conductive layer to form raised conductive features separated by an insulating layer of equal height.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: October 26, 2021
    Assignee: Northeastern University
    Inventors: Hobin Jeong, Ahmed Busnaina
  • Patent number: 11131673
    Abstract: Bioassays are provided for detecting and analyzing responses from single cells and cell pairs suspended in micro-scale droplets (80-200 ?m diameter) generated in microfluidic devices. Cell responses to various stimuli are analyzed. The stimuli are delivered by homotypic or heterotypic cells, small molecule drugs, and therapeutic agents including immunotherapeutics. The bioassays can be used to describe heterogeneity in any given cell population, and can be used in a clinical setting, such as profiling of patient-derived cells, designing personalized treatment strategies, and optimizing drug combinations for immunotherapy of tumors.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: September 28, 2021
    Assignee: Northeastern University
    Inventors: Tania Konry, Saheli Sarkar, Pooja Sabhachandani
  • Patent number: 11129790
    Abstract: A method is provided for reversibly modifying a protein or peptide on its glutamine residue(s) by performing a reaction, such as a transglutaminase-catalyzed reaction, between the protein or peptide and an amine-containing reagent, whereby the reagent is linked through its amine function to a side chain of the glutamine residue. Subjecting the modified protein to an appropriate stimulus regenerates the protein or peptide in its original form.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 28, 2021
    Assignee: Northeastern University
    Inventors: Zhaohui Sunny Zhou, George O'Doherty, Shanshan Liu, Kevin Ryan Moulton, Lincoln Ombelets, Amissi Sadiki