Patents Assigned to OmniVision Technologies, Inc.
  • Patent number: 11412190
    Abstract: An image sensor includes a photodiode array and a color filter array optically aligned with the photodiode array. The photodiode array includes a plurality of photodiodes disposed within respective portions of a semiconductor material. The color filter array includes a plurality of color filters arranged to form a plurality of tiled minimal repeating units. Each minimal repeating unit includes at least a first color filter with a red spectral photoresponse, a second color filter with a yellow spectral photoresponse, and a third color filter with a panchromatic spectral photoresponse.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: August 9, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Chen-Wei Lu, Yin Qian, Eiichi Funatsu, Jin Li
  • Publication number: 20220246656
    Abstract: Methods of forming transistors include providing a substrate material, forming a recess to a first depth in the substrate material, the recess corresponding to a gate region and extending in a channel length direction and a channel width direction that is perpendicular to the channel length direction, forming a trench structure in the substrate material by deepening the recess to a second depth using an isotropic process, forming an isolation layer on the substrate material, forming a gate portion of the isolation layer on the substrate material such that the gate portion of the isolation layer extends into the trench structure, and forming a gate on the isolation layer such that the gate extends into the trench structure.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Seong Yeol Mun, Young Woo Jung
  • Patent number: 11404844
    Abstract: A semiconductor structure is provided. The semiconductor structure includes: a substrate having a cavity recessed from a top surface of the substrate toward a bottom surface of the substrate opposite to the top surface, wherein the cavity has a sidewall and a bottom surface, and the bottom surface of the cavity is substantially parallel to the top surface of the substrate; a light source structure in the cavity, and the light source structure emitting a light from a sidewall of the light source structure; and a diffractive optical element (DOE) over the top surface of the substrate; wherein the sidewall of the cavity is a sloped surface, so that when the light is incident on the sidewall, the sloped surface reflects the incident light to generate a reflected light toward the DOE. Associated semiconductor structure and manufacturing method are also disclosed.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 2, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Chun-Sheng Fan, Wei-Feng Lin
  • Patent number: 11404378
    Abstract: A semiconductor device that includes a metal pad buried in the semiconductor substrate that is electrically connected to a metal interconnection structure and electrically isolated from the semiconductor substrate. The semiconductor substrate forms an opening that extends from a back surface to the metal pad. A method for manufacturing a semiconductor device with buried metal pad including depositing, in a recess of a semiconductor substrate, a metal pad, isolating the pad from the substrate, electrically connecting the metal pad to the frontside of the substrate and connecting the metal pad to the backside of the substrate with an opening. A method for stabilizing through-silicon via connections in semiconductor device including electrically coupling a metal interconnection structure to a metal pad submerged in a semiconductor substrate and forming a through-silicon via into the semiconductor substrate that contacts the metal pad.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: August 2, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Ming Zhang, Dyson H. Tai, Lindsay Grant
  • Patent number: 11399150
    Abstract: Switching techniques for fast voltage settling in image sensors are described. In one embodiment, an image sensor includes a plurality of lateral overflow integrating capacitor (LOFIC) pixels arranged in rows and columns of a pixel array. The plurality of pixels includes an active pixel configured for exposure to light, and a dummy pixel at least partially protected from exposure to light. A common bitline (BL) is couplable to the active pixel and the dummy pixel. A comparator (OA1) is coupled to the bitline. The comparator is configured to receive a pixel voltage (Vx) from the active pixel on one input and a ramp voltage (Vy) on another input. Charge accumulated by the active pixel is determined at least in part by an intersection between the ramp voltage and the pixel voltage.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: July 26, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Zhe Gao, Tiejun Dai
  • Patent number: 11393861
    Abstract: A flare-suppressing image sensor includes a first pixel formed in a substrate and a refractive element located above the first pixel. The refractive element has, with respect to a top surface of the substrate, a height profile having at least two one-dimensional local maxima in each of a first cross-sectional plane and a second cross-sectional plane perpendicular to the first cross-sectional plane. Each of the first and second cross-sectional planes is perpendicular to the top surface and intersects the first pixel.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 19, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Alireza Bonakdar, Zhiqiang Lin, Chen-Wei Lu
  • Patent number: 11381771
    Abstract: A comparator includes a first stage including a first output to generate a first output signal that transitions between an upper and lower voltage level in response to a comparison of first and second inputs of the first stage. A second stage includes an input coupled to receive the first output signal from the first output of the first stage, and a second output configured to generate a second output signal in response to the first output signal. A clamp circuit includes a first node and a second node. The first node is coupled to the first output of the first stage and the second node is coupled to a supply voltage. The clamp circuit is configured to clamp a voltage difference between the first node and the second node to clamp a voltage swing of the first output signal.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hiroaki Ebihara, Chengcheng Xu
  • Patent number: 11375150
    Abstract: An imaging device includes a photodiode array including a 2×2 grouping of N×N groupings of photodiodes. Each N×N grouping includes N2?1 image sensing photodiodes and a single phase detection autofocus (PDAF) photodiode that is arranged proximate to a center of the 2×2 grouping. A shared floating diffusion is coupled to each photodiode of a respective N×N grouping of photodiodes. An analog to digital converter (ADC) is configured to generate a reference readout in response to charge in the shared floating diffusion after a reset operation. The ADC is next configured to generate a PDAF readout in response to charge transferred from the single PDAF photodiode to the shared floating diffusion. The ADC is then configured to generate a combined readout in response to charge transferred from the image sensing photodiodes combined with the charge transferred previously from the single PDAF photodiode in the shared floating diffusion.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: June 28, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventor: Rui Wang
  • Patent number: 11367743
    Abstract: An image sensor pixel includes a plurality of photodiodes, a shared microlens, and a plurality of microlenses. The plurality of photodiodes are arranged as a photodiode array with each of the plurality of photodiodes disposed within a semiconductor material. The shared microlens is optically aligned with a group of neighboring photodiodes included in the plurality of photodiodes. Each of the plurality of microlenses are optically aligned with an individual one of the plurality of photodiodes other than the group of neighboring photodiodes. The plurality of microlenses laterally surrounds the shared microlens.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: June 21, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Xiaodong Yang, Guansong Liu, Peng Lin, Chin Poh Pang, Da Meng
  • Patent number: 11367744
    Abstract: An image sensor pixel comprises a subpixel and a polarization pixel. The subpixel includes a group of photodiodes disposed in semiconductor material, a shared microlens optically aligned over the group of photodiodes, and a subpixel color filter disposed between the group of photodiodes and the shared microlens. The polarization pixel includes a first photodiode disposed in the semiconductor material, an unshared microlens optically aligned over the first photodiode, and a polarization filter disposed between the first photodiode and the unshared microlens. The shared microlens has a first lateral area. The unshared microlens has a second lateral area less than the first lateral area of the shared microlens.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 21, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Chin Poh Pang, Boyang Zhang, Guansong Liu, Peng Lin
  • Patent number: 11362121
    Abstract: An image sensor includes a substrate having a plurality of small photodiodes and a plurality of large photodiodes surrounding the small photodiodes. The substrate further includes a plurality of deep trench isolation structures in regions of the substrate between ones of the small photodiodes and the large photodiodes. Each of large photodiodes having a full well capacity larger than each of the small photodiodes. The image sensor further includes an array of color filters disposed over the substrate, a first and second buffer layer disposed between the substrate and the array of color filters, metal grid structures disposed between the color filters and above the first buffer layer, and an attenuation layer portion above a region of the substrate between ones of the large and small photodiodes, the attenuation layer portion is between the first and second buffer layers and normal to an upper surface of the substrate.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: June 14, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hui Zang, Yuanliang Liu
  • Patent number: 11362124
    Abstract: An image sensor with quantum efficiency enhanced by inverted pyramids includes a semiconductor substrate and a plurality of microlenses. The semiconductor substrate includes an array of pixels. Each of the pixels is configured to convert light incident on the pixel to an electrical output signal, the semiconductor substrate having a top surface for receiving the light. The top surface forms a plurality of inverted pyramids in each pixel. The plurality of microlenses are disposed above the top surface and aligned to the plurality of inverted pyramids, respectively.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: June 14, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Alireza Bonakdar, Zhiqiang Lin, Bill Phan, Badrinath Padmanabhan
  • Patent number: 11356630
    Abstract: An imaging device includes a first pixel circuit having a first plurality of photodiodes that includes a phase detection autofocus photodiode with image sensing photodiodes. A first buffer transistor having a first threshold voltage is coupled to the first plurality of photodiodes to generate a first output signal. A second pixel circuit is included having a second plurality of photodiodes that are all image sensing photodiodes. A second buffer transistor having a second threshold voltage is coupled to the second plurality of photodiodes to generate a second output signal. The first threshold voltage is less than the second threshold voltage. A driver is coupled to receive a combination of the first and second output signals to generate a total output signal. An influence of the first output signal dominates the second output signal in the total output signal because the first threshold voltage is less than the second threshold voltage.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: June 7, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Qingfei Chen, Chin Poh Pang, Qingwei Shan
  • Patent number: 11356626
    Abstract: An imaging device includes a photodiode array. The photodiodes include a first set of photodiodes configured as image sensing photodiodes and a second set of photodiodes configured as phase detection auto focus (PDAF) photodiodes. The PDAF photodiodes are arranged in at least pairs in neighboring columns and are interspersed among the image sensing photodiodes. Transfer transistors are coupled to corresponding photodiodes. The transfer transistors coupled to the image sensing photodiodes included in an active row of are controlled in response to a first transfer control signal or a second transfer control signal that control all of the image sensing photodiodes of the active row. A transfer transistor is coupled to one of a pair of the PDAF photodiodes of the active row. The first transfer transistor is controlled in response to a first PDAF control signal that is independent of the first or second transfer control signals.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: June 7, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Rui Wang, Eiichi Funatsu, Woon Il Choi, Keiji Mabuchi, Chin Poh Pang, Qingfei Chen, Da Meng, Vivian Wang
  • Patent number: 11355537
    Abstract: A pixel cell includes a photodiode buried beneath a first side of semiconductor material and coupled to photogenerate image charge in response to incident light. A transfer gate is disposed over the photodiode and includes a vertical transfer gate portion extending a first distance from the first side into the semiconductor material. A floating diffusion region is disposed in the semiconductor material proximate to the transfer gate and is coupled to transfer the image charge from the photodiode toward the first side of the semiconductor material and into the floating diffusion region in response to a transfer control signal. A first pixel transistor having a first gate is disposed over the photodiode proximate to the first side of the semiconductor material. The first gate has a ring structure laterally surrounding the floating diffusion region and the transfer gate at the first side of the semiconductor material.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: June 7, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hui Zang, Gang Chen
  • Patent number: 11348957
    Abstract: Image sensors include a photodiode formed in a substrate material and a transistor coupled to the photodiode. The transistor has a trench structure formed in the substrate material, an isolation layer disposed on the substrate material, and a gate disposed on the isolation layer and extending into the trench structure. The trench structure has a polygonal cross section in a channel width plane, the polygonal cross section defining at least four sidewall portions of the substrate material, which contribute to an effective channel width measured in the channel width plane that is wider than a planar channel width of the transistor.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: May 31, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Seong Yeol Mun, Young Woo Jung
  • Patent number: 11348956
    Abstract: A pixel circuit includes a photodiode, a floating diffusion, and a conduction gate channel of a multi-gate transfer block disposed in a semiconductor material layer. The multi-gate transfer block is coupled to the photodiode, the floating diffusion, and an overflow capacitor. The multi-gate transfer block also includes first, second, and third gates that are disposed proximate to the single conduction gate channel region. The conduction gate channel is a single region shared among the first, second, and third gates. Overflow image charge generated in the photodiode leaks from the photodiode into the conduction gate channel to the overflow capacitor in response to the first gate, which is coupled between the photodiode and the conduction gate channel, receiving a first gate OFF signal and the second gate, which is coupled between the conduction gate channel and the overflow capacitor, receiving a second gate ON signal.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 31, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Woon Il Choi, Keiji Mabuchi
  • Patent number: 11350049
    Abstract: Image sensors capable of dark current calibration and associated circuits are disclosed herein. The method for calibrating dark current includes acquiring at least one dark current frame of a first plurality of pixels of a pixel array of the image sensor. The dark current frame contains readings of individual dark currents for the corresponding pixels obtained during an exposure period when a transistor is turned on disabling the photodiode. The method also includes acquiring at least one normal frame of a second plurality of pixels of the pixel array of the image sensor. The normal frame contains readings of individual signals for the corresponding pixels obtained during the exposure period when the transistor is turned OFF. The method includes subtracting the at least one dark current frame from the at least one normal frame.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: May 31, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventor: Keiji Mabuchi
  • Patent number: 11343450
    Abstract: Image sensors having reduced dark current and white pixel are disclosed herein. In one embodiment, each pixel of the image sensor includes a photodiode (PD), a first floating diffusion (FD1) coupled to the photodiode through a transfer (TX) transistor, a second floating diffusion (FD2) coupled to the FD1 through a dual floating diffusion (DFD) transistor, and a lateral overflow integrating capacitor (LOFIC) coupled between the FD2 and a variable reference voltage (VCAP). A method for a correlated double sampling (CDS) readout includes: exposing a photodiode (PD) to light during an exposure period and increasing a capacitance of the LOFIC by setting the VCAP to a high voltage (H) level during an integration period of the exposure period.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: May 24, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventor: Takuma Hasegawa
  • Patent number: 11335821
    Abstract: Low noise silicon-germanium (SiGe) image sensor. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array disposed in a semiconductor substrate. The photodiodes of an individual pixel are configured to receive an incoming light through an illuminated surface of the semiconductor substrate. The semiconductor substrate includes a first layer of semiconductor material having silicon (Si); and a second layer of semiconductor material having silicon germanium (Si1-xGex). A concentration x of Ge changes gradually through at least a portion of thickness of the second layer. Each photodiode includes a first doped region extending through the first layer of semiconductor material and the second layer of semiconductor material; and a second doped region extending through the first layer of semiconductor material and the second layer of semiconductor material.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: May 17, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Mamoru Iesaka, Woon Il Choi, Sohei Manabe