Patents Assigned to OmniVision Technologies
  • Patent number: 9312299
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 12, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
  • Patent number: 9312401
    Abstract: An imaging sensor system includes a single photon avalanche diode (SPAD) imaging array including N pixels formed in a first semiconductor layer of a first wafer. Substantially an entire thickness of the first semiconductor layer of each pixel is fully depleted such that a multiplication region included in each pixel near a front side is configured to be illuminated with photons through a back side and through the substantially entire thickness of the fully depleted first semiconductor layer. Deep n type isolation regions are disposed in the first semiconductor layer between the pixels to isolate the pixels. N digital counters are formed in a second semiconductor layer of a second wafer that is bonded to the first wafer. Each of the N digital counters is coupled to the SPAD imaging array and coupled to count output pulses generated by a respective one of the pixels.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: April 12, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventor: Eric A. G. Webster
  • Patent number: 9307215
    Abstract: A system for brightness-sensitive automatic white balancing of an electronic color image includes a processor and a memory with (a) brightness-specific color-weighting maps each specifying illuminant-specific auto white balance parameters, (b) brightness range definitions respectively indicating applicability range of the brightness-specific color-weighting maps, and (c) instructions for white balancing the electronic color image according to scene brightness and based upon the brightness-specific color-weighting maps.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Changmeng Liu, Chengming Liu, Jizhang Shan
  • Patent number: 9305968
    Abstract: An integrated circuit system includes a first device wafer bonded to a second device wafer at a bonding interface of dielectrics. Each wafer includes a plurality of dies, where each die includes a device, a metal stack, and a seal ring that is formed at an edge region of the die. Seal rings included in dies of the second device wafer each include a first conductive path provided with metal formed in a first opening that extends from a backside of the second device wafer, through the second device wafer, and through the bonding interface to the seal ring of a corresponding die in the first device wafer.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Tiejun Dai, Duli Mao, Cunyu Yang, Howard E. Rhodes
  • Patent number: 9305949
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode, a plurality of photodiodes, a shared floating diffusion region, a first transfer gate, and a second transfer gate. The first photodiode is disposed in a semiconductor material. The first photodiode has a first light exposure area and a first doping concentration. The plurality of photodiodes is also disposed in the semiconductor material. Each photodiode in the plurality of photodiodes has the first light exposure area and the first doping concentration. The first transfer gate is coupled to transfer first image charge from the first photodiode to the shared floating diffusion region. The second transfer gate is coupled to transfer distributed image charge from each photodiode in the plurality of photodiodes to the shared floating diffusion region.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Dajiang Yang, Zhibin Xiong, Dyson H. Tai
  • Patent number: 9307214
    Abstract: A brightness-sensitive automatic white balance method includes (a) determining the brightness of a scene captured in an electronic color image, (b) selecting a color-weighting map based upon the brightness of the scene, (c) extracting auto white balance parameters from the color-weighting map, and (d) white balancing the electronic color image according to the auto white balance parameters. An adaptive automatic white balance method includes (a) refining, based upon a first electronic color image of a scene illuminated by an illuminant of a first spectral type, a color-weighting probability distribution for the illuminant of the first spectral type, wherein the color-weighting probability distribution may be brightness-specific, (b) extracting auto white balance parameters from the refined color-weighting probability distribution, and (c) white balancing, according to the auto white balance parameters, an electronic color image of a scene illuminated by the illuminant of the first spectral type.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Changmeng Liu, Chengming Liu, Jizhang Shan
  • Patent number: 9304741
    Abstract: Techniques and mechanisms for generating a random number. In an embodiment, a first signal is received from a first cell including a first source follower transistor. Circuit logic detects for a pulse of the first signal and, in response to the pulse, generates a signal indicating detection of a first random telegraph noise event in the first source follower transistor. In another embodiment, a first count update is performed in response to the indicated detection of the first random telegraph noise event. The first count update is one basis for generation of a number corresponding to a plurality of random telegraph noise events.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Dominic Massetti, Gang Chen
  • Patent number: 9305962
    Abstract: Embodiments of the invention relate to a camera assembly including a rear-facing camera and a front-facing camera operatively coupled together (e.g., bonded, stacked on a common substrate). In some embodiments of the invention, a system having an array of frontside illuminated (FSI) imaging pixels is bonded to a system having an array of backside illuminated (BSI) imaging pixels, creating a camera assembly with a minimal size (e.g., a reduced thickness compared to prior art solutions). An FSI image sensor wafer may be used as a handle wafer for a BSI image sensor wafer when it is thinned, thereby decreasing the thickness of the overall camera module. According to other embodiments of the invention, two package dies, one a BSI image sensor, the other an FSI image sensor, are stacked on a common substrate such as a printed circuit board, and are operatively coupled together via redistribution layers.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Ashish Shah, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 9304299
    Abstract: A four-piece all-aspheric adapter fisheye lens includes a negative meniscus lens, a biconcave lens, a positive meniscus lens, and a biconvex lens. The biconcave lens is between the negative meniscus lens and the positive meniscus lens; the positive meniscus lens is between the biconcave lens and the biconvex lens. The negative meniscus lens, the biconcave lens, the positive meniscus lens, and the biconvex lens are coaxial and arranged with an exit pupil to cooperatively generate an image with a camera lens that has greater field of view than the camera lens alone when the exit pupil is coplanar and coaxial with an entrance pupil of the camera lens. Each of the negative meniscus lens, the biconcave lens, the positive meniscus lens, and the biconvex lens has an aspheric object-side surface and an aspheric image-side surface.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chuen-Yi Yin, Jau-Jan Deng
  • Patent number: 9300331
    Abstract: A transmitter for generating a differential signal pair including a pre-emphasis component. In an embodiment, the transmitter comprises pre-driver circuitry including an input to receive a single-ended data signal. The differential transmitter further comprises a load circuit coupled between the input and a node coupled to an output of the pre-driver circuitry which corresponds to a constituent signal of the differential signal pair. In another embodiment, the load circuit is configurable to provide a signal path between the input and the node. A configuration of the load circuit allows for a type of pre-emphasis to be included in the constituent signal.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 29, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Min Liu, Yun Hak Koh, Charles Qingle Wu
  • Patent number: 9299732
    Abstract: An example imaging sensor system includes a Single-Photon Avalanche Diode (SPAD) imaging array formed in a first semiconductor layer of a first wafer. The SPAD imaging array includes an N number of pixels, each including a SPAD region formed in a front side of the first semiconductor layer. The first wafer is bonded to a second wafer at a bonding interface between a first interconnect layer of the first wafer and the second interconnect layer of the second wafer. An N number of digital counters are formed in a second semiconductor layer of the second wafer. Each of the digital counters are configured to count output pulses generated by a respective SPAD region.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 29, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Eric A. G. Webster, Tiejun Dai
  • Patent number: 9300877
    Abstract: An optical zoom imaging system includes (1) first and second image sensors disposed on a common substrate, and (2) first and second optical blocks in optical communication with the first and second image sensors, respectively. The first and second optical blocks have different respective magnifications. An array includes a plurality of the optical zoom imaging systems. A method for imaging a scene includes the following steps: (1) generating first image data representing the scene at a first zoom level using a first optical block in optical communication with a first image sensor, (2) generating second image data representing the scene at a second zoom level using a second optical block in optical communication with a second image sensor, the second zoom level being different from the first zoom level, and (3) selecting between the first image data and the second image data based on a desired zoom level.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: March 29, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventor: Tingyu Cheng
  • Patent number: 9294563
    Abstract: An apparatus and method for media streaming in a peer-to-peer (P2P) network having a plurality of peer modules connected on the network include a source peer module connected on the network, the source peer module being associated with a highest logical level of the network. A plurality of viewer peer modules is also connected on the network, each viewer peer module being associated with a logical network level. The logical network level associated with each viewer peer module is a quantity of logical network levels that the viewer peer module is logically below the source peer module. The P2P network is configured such that each viewer peer module can be connected to no more than one up-peer module logically above the viewer peer module, and each viewer peer module can be connected to any integer number of down-peer modules logically below the viewer peer module.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 22, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Xinhua Su, Hui Pan
  • Patent number: 9291755
    Abstract: Embodiments of an apparatus including a color filter arrangement formed on a substrate having a pixel array formed therein. The color filter arrangement includes a clear filter having a first clear hard mask layer and a second clear hard mask layer formed thereon, a first color filter having the first clear hard mask layer and the second hard mask layer formed thereon, a second color filter having the first clear hard mask layer formed thereon, and a third color filter having no clear hard mask layer formed thereon. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: March 22, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 9293505
    Abstract: A method for black coating camera cubes at wafer level includes expanding the gap between individual diced camera cubes of the wafer by stretching tape securing the diced camera cubes. The method includes applying a black coating layer to the stretched camera cubes, laser trimming undesired portions of the black coating layer, and removing the undesired portions of the black coating layer.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: March 22, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward Nabighian, Yi Qin, Ward Zhang, Alan Martin
  • Patent number: 9294693
    Abstract: An image sensor includes a plurality of photodiodes arranged into an array of rows and columns. The photodiodes are grouped into pixel units, where each pixel unit includes at least four photodiodes and shared pixel unit circuitry coupled to each of the four photodiodes. In one aspect the shared pixel unit circuitry may include a shared source follower transistor. In another aspect the shared pixel unit circuitry includes a shared reset transistor. Two of the photodiodes of the pixel unit are in a first column of the array and another two of the photodiodes are in a second column of the array. One of the photodiodes in the second column is in a row that is between rows of the two photodiodes in the first column.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 22, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventor: Xianmin Yi
  • Patent number: 9287308
    Abstract: An image sensor pixel includes one or more photodiodes disposed in a semiconductor layer. Pixel circuitry is disposed in the semiconductor layer coupled to the one or more photodiodes. A passivation layer is disposed proximate to the semiconductor layer over the pixel circuitry and the one or more photodiodes. A contact etch stop layer is disposed over the passivation layer. One or more metal contacts are coupled to the pixel circuitry through the contact etch stop layer. One or more isolation regions are defined in the contact etch stop layer that isolate contact etch stop layer material through which the one or more metal contacts are coupled are coupled to the pixel circuitry from the one or more photodiodes.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: March 15, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sing-Chung Hu, Dajiang Yang, Oray Orkun Cellek, Hsin-Chih Tai, Gang Chen
  • Patent number: 9288379
    Abstract: A continuous autofocus system includes an image generation portion including a lens, an autofocus voice coil motor for translating the lens with respect to an image sensor capable of generating image data. The autofocus system further includes a driver IC for controlling the autofocus voice coil motor based on the image data, wherein the image data is directly transmitted to the driver IC thereby continuously maintaining a focused image generated by the image generation portion.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 15, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventor: Chih-Hao Teng
  • Patent number: 9282256
    Abstract: Generating an image with an imaging system includes capturing a first sub-image during a first exposure with a first pixel subset of an image sensor of the imaging system, capturing a second sub-image during a second exposure with a second pixel subset of the image sensor, capturing a third sub-image during a third exposure with a third pixel subset of the image sensor, and capturing a fourth sub-image during a fourth exposure with a fourth pixel subset of the image sensor. The first, second, third, and fourth exposures have different durations. A preferred exposure is selected from between the first, second, third and fourth exposures by analyzing the first, second, third, and fourth sub-images. Then, a full-resolution image is captured at the preferred exposure. An HDR image is generated based on the full-resolution image and the sub-images.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: March 8, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jizhang Shan, Eiichi Funatsu, Yiu Fai Wong
  • Patent number: 9282265
    Abstract: A camera device includes a single imaging sensor, a plurality of imaging objectives associated with the single imaging sensor, and a plurality of dedicated image areas within the single imaging sensor, each of the plurality of dedicated image areas corresponding to a respective one of the plurality of imaging objectives, such that images formed by each of the plurality of imaging objectives may be recorded by the single imaging sensor.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: March 8, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Kevin Ka Kei Leung, Wen Hua Lin