Patents Assigned to OSRAM
  • Patent number: 10777708
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer sequence, a transparent substrate, at least one contact trench, at least one insulating trench, at least one current distribution trench, at least in the insulating trench, an electrically insulating mirror layer that reflects radiation generated in an active layer, at least one metallic current web in the contact trench configured for a current conduction along the contact trench and supplying current to a first semiconductor region, and at least one metallic busbar in the current distribution trench that energizes a second semiconductor region, wherein the contact trench, the isolating trench and the current distribution trench extend from a side of the second semiconductor region facing away from the substrate through the active layer into the first semiconductor region, and the contact trench is completely surrounded by the insulating trench, and the current distribution trench lies only outside the insulating trench.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: September 15, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Fabian Kopp, Attila Molnar
  • Patent number: 10777617
    Abstract: A display, a circuit arrangement for a display and a method of operating a circuit arrangement of a display are disclosed. In an embodiment a display includes a plurality of light emitters arranged in a plurality of rows and columns, each row including an electric line and each column including an electric line, a voltage supply for providing a first voltage level to the electric lines of the rows and a second voltage level to the electric lines of the columns and a light emitter arranged in a first row and a first column and interconnecting the electric line of the first row and the electric line of the first column, wherein the electric line of the first column includes a current source, the current source being adapted to be switched on and off and to provide an electric current to drive the light emitter.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: September 15, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alireza Safaee, Marcel Severin
  • Patent number: 10777713
    Abstract: A method of producing an optoelectronic lighting device includes forming a volume emitter such that it is at least partly transmissive to generated electromagnetic radiation, forming a concavely formed, optically transparent frame element including a curable, flowable material including phosphor particles at a side region of the volume emitter, wherein forming a conversion layer that converts the electromagnetic radiation into a second wavelength range is carried out by a sedimentation process of phosphor particles, and the conversion layer is formed within an optically transparent frame element in a manner adjoining an optically active region, forming a reflection element on the optically transparent frame element, and forming a conversion element that converts the electromagnetic radiation into a second wavelength range, wherein the conversion element is formed in a manner overlapping at least a second surface of the volume emitter and frame element.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: September 15, 2020
    Assignee: OSRAM OLED GmbH
    Inventor: Ivar Tangring
  • Patent number: 10775033
    Abstract: A connector for connecting mutually facing ends of elongate lighting devices is provided. The connector includes a connector body having opposed end regions coupleable to the facing ends of said lighting devices. The connector body includes a light emission region between the opposed end regions.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: September 15, 2020
    Assignee: OSRAM GMBH
    Inventors: Alberto Zanotto, Simon Bobbo, Valerio Michielan, Andrea Morra
  • Patent number: 10770506
    Abstract: In at least one embodiment, the method is designed for producing a light-emitting diode display (1). The method comprises the following steps: •A) providing a growth substrate (2); •B) applying a buffer layer (4) directly or indirectly onto a substrate surface (20); •C) producing a plurality of separate growth points (45) on or at the buffer layer (4); •D) producing individual radiation-active islands (5), originating from the growth points (45), wherein the islands (5) each comprise an inorganic semiconductor layer sequence (50) with at least one active zone (55) and have a mean diameter, when viewed from above onto the substrate surface (20), between 50 nm and 20 ?m inclusive; and •E) connecting the islands (5) to transistors (6) for electrically controlling the islands (5).
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: September 8, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Norwin Von Malm, Martin Mandl, Alexander F. Pfeuffer, Britta Goeoetz
  • Patent number: 10770442
    Abstract: A display device is disclosed. In an embodiment a display device includes a carrier including a plurality of switches, a semiconductor layer sequence arranged on the carrier, the semiconductor layer sequence comprising an active region configured to generate primary radiation and forming a plurality of pixels, wherein each switch is configured to control at least one pixel and an optical element arranged on each pixel on a radiation exit surface of the semiconductor layer sequence facing away from the carrier.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: September 8, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Lorenzo Zini, Martin Rudolf Behringer
  • Patent number: 10770980
    Abstract: An electronic half-bridge converter includes an input comprising two terminals for receiving a first power signal, and an output comprising two terminals for providing a second power signal. The converter includes a transformer and a half-bridge, wherein the half-bridge is interposed between input and primary winding of transformer. On the secondary side of transformer, the converter includes a rectifier circuit configured for converting the current provided via secondary winding into a rectified current, and a filter circuit configured for providing said second power signal by means of a filtering of the rectified current provided by rectifier circuit. The filter circuit includes: a first branch connected between both input terminals of the filter circuit and comprising a first inductor and a first capacitor connected in series, and a second branch connected in parallel with the first branch and comprising a second inductor and the output connected in series.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: September 8, 2020
    Assignee: OSRAM GmbH
    Inventor: Daniele Luccato
  • Patent number: 10768272
    Abstract: A system and method for determining vehicle position uses light based communication (LBC) signals and a received signal strength indicator (RSSI) to determine the vehicle position. Each vehicle includes a LBC system having an array of transmitting light emitting diodes (LEDs) and an array of receiver photodiodes for transmitting and receiving pulsed light binary messages. Each LBC system has a controller coupled to the transmitter diodes and receiver diodes. The controller includes a vehicle communication module that may be executed by a processor to determine the distance. The processor models a first distance between a first transmitting LBC system and a first receiving LBC system, then models a second distance between a second transmitting LBC system and the first receiving LBC system, and then determines the distance between the first vehicle and the second vehicle using trilateration of the first distance and the second distance.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: September 8, 2020
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Vimlesh Shukla, Jeremy Spaulding, Mervyn Anthony
  • Publication number: 20200279978
    Abstract: The invention relates to an optoelectronic component (100) having a semiconductor chip (2) for generating a primary radiation in the blue spectral range, a conversion element (4) which is arranged in the beam path of the semiconductor chip and is designed to generate a secondary radiation from the primary radiation, wherein the conversion element (4) comprises at least one first phosphor (9) and a second phosphor (10), wherein the first phosphor (9) is Sr(Sr1?xCax)Si2Al2N6:Eu2+ and/or (Sr1?yCay)[LiAl3N4]:Eu2+, where 0?x?1 and 0?y?1, wherein a total radiation (G) exiting from the component (100) is white mixed light.
    Type: Application
    Filed: November 25, 2016
    Publication date: September 3, 2020
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Philipp PUST
  • Patent number: 10763396
    Abstract: A light-emitting module and a display device including the same are disclosed. In an embodiment a light-emitting module includes a plurality of emission regions configured to emit light, at least one first emission region and at least one second emission region of a first type configured to emit light of a first color locus and at least one first emission region and at least one second emission region of a second type configured to emit light of a second color locus and a control device for supplying the emission regions with current, wherein the emission regions are arranged on a common semiconductor chip, wherein the first color locus is different from the second color locus, wherein the first and second emission regions of the first type are adjacent to one another, and wherein the first and second emission regions of the second type are adjacent to one another.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: September 1, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Jürgen Moosburger, Matthias Sabathil, Frank Singer
  • Patent number: 10763238
    Abstract: A method of aligning semiconductor chips in a medium includes providing an electrically insulating liquid medium; providing semiconductor chips; forming a suspension with the medium and the semiconductor chips; exposing the semiconductor chips to electromagnetic radiation that generates free charge carriers in the semiconductor chips; arranging the suspension in an electric field in which the semiconductor chips are aligned along the electric field; and curing the medium after aligning the semiconductor chips.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: September 1, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Philipp Kreuter, Andreas Biebersdorf, Christoph Klemp, Jens Ebbecke, Ines Pietzonka, Petrus Sundgren
  • Patent number: 10763400
    Abstract: Semiconductor structures having insulators coatings and methods of fabricating semiconductor structures having insulators coatings are described. In an example, a method of coating a semiconductor structure involves adding a silicon-containing silica precursor species to a solution of nanocrystals. The method also involves, subsequently, forming a silica-based insulator layer on the nanocrystals from a reaction involving the silicon-containing silica precursor species. The method also involves adding additional amounts of the silicon-containing silica precursor species after initial forming of the silica-based insulator layer while continuing to form the silica-based insulator layer to finally encapsulate each of the nanocrystals.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 1, 2020
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Juanita N. Kurtin, Weiwen Zhao
  • Patent number: 10763406
    Abstract: The invention relates to a semiconductor component comprising: a semiconductor chip (10) which has a semiconductor body (1) with an active region (12) and a substrate (3) with a first conductor body (31), a second conductor body (32) and a first moulded body (33); and a second moulded body (5); wherein the second moulded body (5) completely surrounds the semiconductor chip (10) in lateral directions (L), the semiconductor chip (10) extends all the way through the second moulded body (5) in a vertical direction (V), at least some parts of an upper side and a lower side of the semiconductor chip (10) are not covered by the second moulded body (5), the substrate (3) is mechanically connected to the semiconductor body (2), the active region (12) is connected to the first conductor body (31) and the second conductor body (32) in an electroconductive manner, and the second moulded body (5) is directly adjacent to the substrate (3) and the semiconductor body (1).
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: September 1, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Korbinian Perzlmaier, Christian Leirer
  • Patent number: 10763245
    Abstract: An optoelectronic component includes a carrier, wherein a first optoelectronic semiconductor chip and a second optoelectronic semiconductor chip are arranged above a top side of the carrier, the optoelectronic semiconductor chips each include a top side, an underside situated opposite the top side, and side faces extending between the top side and the underside, the undersides of the optoelectronic semiconductor chips face the top side of the carrier, a first potting material is arranged above the top side of the carrier, the first potting material covering parts of the side faces of the first optoelectronic semiconductor chip, and a second potting material is arranged above the top side of the carrier, and the second potting material covering the first potting material.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 1, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Luca Haiberger, Matthias Sperl
  • Patent number: 10761200
    Abstract: A method for evaluating positioning parameters in a defined area, wherein the defined area is affected by at least three stationary access beam points and over which a grid pattern is laid with at least two grids, each grid having an anchor. An initial vector of positioning parameters is assigned to each anchor and a plurality of RSSI measurements are captured within the defined area by receiving signals from the at least three stationary access beam points. The plurality of RSSI measurement are clustered in a plurality of subsets, wherein the number of subsets corresponds to the number of the at least two grids. Finally, each subset of the plurality of subsets is associated with a respective one of the at least two grids and the initial vector is updated based on the subset of the plurality of subsets associated with the respective one of the at least two grids.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: September 1, 2020
    Assignee: Osram GmbH
    Inventors: Michael Eschey, Helmi Abidi
  • Publication number: 20200273907
    Abstract: A light-emitting semiconductor chip and a display device are disclosed. In an embodiment a light-emitting semiconductor chip includes an emission surface formed with a plurality of first emission regions and second emission regions, wherein the first emission regions and the second emission regions are configured to emit light of a predeterminable color location, wherein the first and second emission regions are separately controllable from each other, wherein the first emission regions and second emission regions are arranged next to one another in a first plane, wherein all second emission regions form at least a part of an outer edge of the emission surface, and wherein the first emission regions have a smaller extent than the second emission regions along at least one direction lying in the first plane.
    Type: Application
    Filed: July 31, 2018
    Publication date: August 27, 2020
    Applicant: Osram Oled GmbH
    Inventors: Peter BRICK, Hubert HALBRITTER, Mikko PERÄLÄ, Frank SINGER
  • Patent number: 10756245
    Abstract: An optoelectronic component has at least one lead frame section, wherein an optoelectronic element is arranged on the lead frame section, a mold material is applied at least on a first face of the lead frame section and adhesively connected to the lead frame section by the first face, the lead frame section consists of a predetermined material, a part of the first face of the lead frame section is provided with a coating, a region of the first face is free of the coating, and the mold material connects to the material of the lead frame section in the free region.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: August 25, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Michael Wittmann, Martin Brandl
  • Patent number: 10756294
    Abstract: A method is specified for production of an insulator layer. This method comprises the following process steps: A) providing a precursor comprising a mixture of a first, a second and a third component where—the first component comprises a compound of the general where R1 and R2 are each independently selected from a group comprising hydrogen and alkyl radicals and n=1 to 10 000; the second component comprises a compound of the general where R3 is an alkyl radical, and the third component comprises at least one amine compound; B) applying the precursor to a substrate; C) curing the precursor to form the insulator layer. The first compound comprises an epoxy group and a hydroxyl group. The second compound comprises an ester group. The curing takes place at room temperature or at temperatures between 50° C. and 260° C.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: August 25, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Michael Popp, Andrew Ingle, Christoph Kefes, Johannes Rosenberger, Stefan Dechand, Egbert Hoefling, Benjamin Claus Krummacher
  • Patent number: D894848
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: September 1, 2020
    Assignee: Osram Sylvania Inc.
    Inventors: Chad Ice, Vernon Price
  • Patent number: D894849
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: September 1, 2020
    Assignee: Osram Sylvania Inc.
    Inventors: Chad Ice, Vernon Price