Abstract: An optoelectronic component including a first optoelectronic semiconductor chip configured to emit light includes a wavelength from an infrared spectral range, and a second optoelectronic semiconductor chip configured to emit light including a wavelength from a visible spectral range, wherein the optoelectronic component includes a reflector body including a top side and an underside, the reflector body includes a cavity opened toward the top side, a wall of the cavity constitutes a reflector, and the first optoelectronic semiconductor chip is arranged at a bottom of the cavity.
Type:
Grant
Filed:
September 14, 2017
Date of Patent:
November 17, 2020
Assignee:
OSRAM OLED GmbH
Inventors:
Thomas Kippes, Jason Rajakumaran, Ulrich Frei, Claus Jäger
Abstract: A method for manufacturing an optoelectronic component and an optoelectronic component are disclosed. In an embodiment, a method includes applying a conversion layer including a luminescence conversion material to a support plate including a glass, arranging at least two optoelectronic semiconductor chips over the conversion layer on a side remote from the support plate and forming an envelope material free from a luminescence conversion material between the optoelectronic semiconductor chips, thereby forming a workpiece.
Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
Type:
Grant
Filed:
September 21, 2017
Date of Patent:
November 17, 2020
Assignee:
OSRAM Opto Semiconductors GmbH
Inventors:
Juanita N. Kurtin, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Georgeta Masson
Abstract: The invention relates to an optoelectronic component (100) comprising a semiconductor chip (1) configured for emitting radiation, a conversion element (2) comprising quantum dots (5) and configured for wavelength conversion of radiation, wherein the conversion element (2) comprises a layer structure (7) having a plurality of inorganic barrier layers (31, 32, 33, 34), wherein the inorganic barrier layers (31, 32, 33, 34) are spatially separated from one another at least regionally by a hybrid polymer (4), wherein the hybrid polymer (4) comprises organic and inorganic regions that are covalently bonded to one another, wherein the quantum dots (5) are embedded in the hybrid polymer (4) and/or at least in one of the barrier layers (31, 32, 33, 34).
Abstract: A semiconductor layer sequence is disclosed. In an embodiment the semiconductor layer sequence includes an n-conducting n-region, a p-conducting p-region and an active zone having at least one quantum well located between the n-region and the p-region, wherein the semiconductor layer sequence includes AlInGaN, wherein the n-region comprises a superlattice, wherein the superlattice has a structural unit which repeats at least three times, wherein the structural unit comprises at least one AlGaN layer, at least one GaN layer and at least one InGaN layer, wherein an intermediate layer is disposed between the active zone and the superlattice, wherein the intermediate layer comprises either n-doped GaN or n-doped GaN together with n-doped InGaN so that the intermediate layer is free of aluminum, and wherein the intermediate layer directly adjoins the active zone and the superlattice.
Abstract: A filament includes a radiation-transmissive substrate, a plurality of LEDs, and a converter layer, wherein the substrate has an upper side and a lower side facing away from the upper side, the LEDs being arranged on the upper side of the substrate, the converter layer covers the LEDs, the upper side and the lower side of the substrate, and the converter layer has a first sublayer on the upper side and a second sublayer on the lower side, the converter layer is configured to obtain an improved radiation profile of the filament, along a lateral direction, the converter layer has a continuously varying vertical layer thickness, the lateral direction is a lateral longitudinal direction parallel to a main extension surface of the substrate, and the substrate has a length expanding along the lateral longitudinal direction that is greater than a width of the substrate along a lateral transverse direction.
Type:
Grant
Filed:
February 7, 2020
Date of Patent:
November 17, 2020
Assignee:
OSRAM OLED GmbH
Inventors:
Markus Hofmann, Thomas Schlereth, Michael Bestele
Abstract: A lighting device, e.g. for wallwashing lighting applications, includes a linear array of light radiation emitters including a light radiation source, e.g. a LED source, a light guide member having a first end coupled with the radiation source and a second end to emit light radiation guided by the guide member along a guide axis, as well as an optical system to receive light radiation from the light guide member and project outgoing light radiation from the lighting device. The light guide members of the light radiation emitters in the array are arranged with their second ends aligned in a longitudinal direction of the array, and with their light guide axes lying in a common plane angled to a reference plane. The optical systems of the light radiation emitters in the array produce outgoing light radiation beams having higher angles to said reference plane than the corresponding input beams.
Type:
Grant
Filed:
January 12, 2018
Date of Patent:
November 17, 2020
Assignee:
Osram GmbH
Inventors:
Renato Frison, Alberto Alfier, Xiaolong Li, Luca Mascolo
Abstract: Various implementations disclosed herein include a distance measuring unit for signal transition time-based measurement of a distance to an object located in a detection field, with an emitter unit with multiple emitters, each designed to emit pulses in the form of electromagnetic radiation, a receiver unit for receiving the electromagnetic radiation after a distance-dependent transition time, and a tiltable mirror, wherein the distance measuring unit is configured such that a first of the emitters emits multiple pulses sequentially via the mirror, including at a first time in a first solid angle segment in a first angular position of the mirror, and at a second time in a second solid angle segment in a second angular position of the mirror; and a second of the emitters also emits a pulse in at least one of the solid angle segments via the mirror.
Abstract: A lighting device, comprising a power setting unit for setting an electrical power of a light source electrically coupled to the power setting unit, a programmable control unit connected to the power setting unit for controlling the power setting unit, a light control interface unit connected to the control unit for supplying a control signal, and a housing made of an electrically insulating material, which provides a power connection for connecting to an electrical power supply network. The housing encloses at least the power setting unit and the control unit so that they are protected. The control signal is predefinable via the light control interface from outside the housing. The control unit provides a programming interface having at least two contact surfaces for electrically contacting the programming interface and an isolation unit for the programming interface and the housing has a passage opening in a housing wall for each contact.
Type:
Grant
Filed:
October 28, 2016
Date of Patent:
November 10, 2020
Assignee:
Osram GmbH
Inventors:
Andreas Hammer, Antje Graichen, Simon Lankes, Stephan Janka
Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment a method for producing an optoelectronic component includes providing a semiconductor capable of emitting primary radiation, providing an alkoxy-functionalized polyorganosiloxane resin and crosslinking the alkoxy-functionalized polyorganosiloxane resin to form a three-dimensionally crosslinked polyorganosiloxane, wherein an organic portion of the three-dimensionally crosslinked polyorganosiloxane is up to 25 wt %.
Type:
Grant
Filed:
April 13, 2017
Date of Patent:
November 10, 2020
Assignee:
OSRAM OLED GMBH
Inventors:
Gertrud Kräuter, Matthias Loster, Kathy Schmidtke, Alan Piquette
Abstract: An optoelectronic semiconductor component includes a semiconductor layer sequence that generates radiation, the semiconductor layer sequence has an emission side and a rear side opposite said emission side, a mirror for the generated radiation on the rear side, a carrier that is transmissive to the radiation generated, on the emission side, and a reflector housing on side surfaces of the carrier, the reflector housing is impermeable to the generated radiation and configured for diffuse reflection of generated radiation and includes a radiation exit opening, wherein at least one of a width of an opening in the reflector housing and an area of the radiation exit opening decrease(s) in a direction away from the emission side, and a maximum emission of the generated radiation takes place in an emission angle range of 30° to 60°, relative to a perpendicular to the emission side.
Abstract: An epitaxial conversion element, a method for producing an epitaxial conversion element, a radiation emitting RGB unit and a method for producing a radiation emitting RGB unit are disclosed. In an embodiment an epitaxial conversion element includes a green converting epitaxial layer configured to convert electromagnetic radiation from a blue spectral range into electromagnetic radiation of a green spectral range and a red converting epitaxial layer configured to convert electromagnetic radiation from the blue spectral range into electromagnetic radiation of a red spectral range, wherein the green converting epitaxial layer and the red converting epitaxial layer are based on a phosphide compound semiconductor material, and wherein the green converting epitaxial layer and the red converting epitaxial layer are in different main extension planes which are parallel to each other.
Abstract: An optoelectronic semiconductor chip includes a contact layer that impresses current directly into a first semiconductor region present in direct contact with a current web, the first semiconductor region is an n-side and a second semiconductor region is a p-side of a semiconductor layer sequence, and a second mirror layer is applied directly to a second semiconductor region, a plurality of contact fields and isolator fields are arranged alternately along a longitudinal direction of the current web, in the contact fields, the contact layer is in direct contact with the current web, and the isolator fields are free of the contact layer, and a first mirror layer is located between the current web and the first semiconductor region.
Abstract: An optoelectronic lighting device includes an optoelectronic semiconductor chip including a top side and an underside opposite the top side, wherein a semiconductor layer sequence is formed between the top side and the underside, the semiconductor layer sequence includes an active zone that generates electromagnetic radiation, and a barrier for a bonding material flowing on account of cohesive bonding of the semiconductor chip to a carrier is formed at one of the top side and the underside.
Abstract: A surface-mountable semiconductor laser and an arrangement with such a semiconductor laser are disclosed. In one embodiment, the semiconductor laser is includes a semiconductor layer sequence having at least one generation region between a p-side and an n-side, at least two contact surfaces for external electrical contacting of the p-side and the n-side, wherein the contact surfaces are located on the same side of the semiconductor layer sequence in a common plane so that the semiconductor laser are contactable without bonding wires, at least one of a plurality of conductor rails extending from a side with the contact surfaces across the semiconductor layer sequence and a plurality of through-connections running at least through the generation region, wherein the generation region is configured to be pulse operated with time-wise current densities of at least 30 A/mm2.
Abstract: A method of producing an optoelectronic component includes providing a carrier, generating a plurality of recesses in the carrier, applying a plurality of drops of a cover material to the carrier, introducing an optoelectronic semiconductor chip including a semiconductor body and contact elements on an underside of the semiconductor body into at least some of the drops, and curing the drops of the cover material into cover bodies, wherein at least some of the drops are completely surrounded by recesses in the carrier, and the recesses in the carrier are a stop edge for the cover material during introduction of the optoelectronic semiconductor chip.