Abstract: A synchronized laser system for illuminating a sample with first and second laser light pulses, said system comprising: a trigger, said trigger being operative to issue first and second trigger signals, said first and second trigger signals being emitted at an adjustable frequency with a predetermined delay therebetween; a first tunable mode-locked laser operative for emitting said first laser light pulses in response to receiving a train of said first trigger signals, a first wavelength of said first laser light pulses being dependent on said adjustable frequency in accordance with a first wavelength-frequency relationship; a second tunable mode-locked laser operative for emitting said second laser light pulses in response to receiving a train of said second trigger signals, a second wavelength of said second laser light pulses being dependent on said adjustable frequency in accordance with a second wavelength-frequency relationship; wherein said predetermined delay is such that said first and second laser l
Abstract: A demultiplexer includes an input optical link to receive an input signal. A grating receives the input signal from the input optical link and generates individual optical wavelength signals. A mirror array operative as a beam steering engine receives the individual optical wavelength signals and redirects them to the grating. Output optical links receive the individual optical wavelength signals from the grating.
Abstract: A semiconductor light emitting structure includes an epitaxial structure, an N-type electrode pad, a P-type electrode pad and an insulation layer. The N-type electrode pad and the P-type electrode pad are disposed on the epitaxial structure apart, wherein the P-type electrode pad has a first upper surface. The insulation layer is disposed on the epitaxial structure and located between the N-type electrode pad and the P-type electrode pad, wherein the insulation layer has a second upper surface. The first upper surface of the P-type electrode pad and the second upper surface of the insulation layer are coplanar.
Abstract: Autonomous/self-powering image detecting systems and their manufacturing technologies are disclosed. An antenna is used to communicate signals. A first energy harvester is used to harvest energy from blackbody radiation, RF signals, movement/vibration, or combination thereof. A power management system is used which controls the energy flow to and from the energy-storage. An image sensor to take the image, a lens, and a transmitter to transmit the images to an outside device are also used in this invention. According to this preferred embodiment, an energy harvester harnessing energy from blackbody radiation from and within the body, is used to extract enough energy to increase the operation time and also to make precision of the image detecting system.
Abstract: A laser module has a unitary base including stepped platforms with an offset relative to an adjacent platform, each stepped platform accommodating a laser source with at least a first and a second plurality of stepped platforms, each platform accommodating a cooling channel inside at a predetermined depth below the top surface of the platform to conduct a flow of cooling fluid provided on an inlet, the cooling channel running under a platform having microchannels, the cooling channels being connected to a fluid inlet with an inlet manifold that provides cooling fluid at the inlet and an outlet manifold to dispose the cooling fluid with waste heat at an outlet, the laser module producing in one embodiment no less than 100 Watt of optical power.
Type:
Grant
Filed:
July 8, 2015
Date of Patent:
August 9, 2016
Assignee:
Trumpf Photonics, Inc.
Inventors:
Thilo Vethake, Jeffrey Eisenmann, Stefan Heinemann
Abstract: An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output.
Abstract: Methods, architectures, circuits, and/or systems for monitoring operating parameters and/or generating status indications associated with electronic device operation are disclosed. The method can include (i) monitoring a first operating parameter related to operation of the electronic device to determine a first parameter value, (ii) calculating a difference between the first parameter value and a predetermined value for the first operating parameter, (iii) monitoring a second operating parameter on which thresholds for operational warnings and/or alarms are based to determine a second parameter value, (iv) updating or changing the thresholds based on a predetermined change or event in the second parameter value, (v) comparing the difference to the updated or changed thresholds, and (vi) generating a corresponding one of the operational warnings and/or alarms when the difference crosses at least one of the thresholds in a predetermined direction.
Abstract: A multilayer film or skin for free space optical data transmission includes a first outer layer. The first outer layer has a first laterally extending area that transmits optical data signals received over a range of incident angle. A second layer that includes a second laterally extending area underlies the first layer. At least a portion of the optical data signals received by the second layer from the first outer layer is focused or otherwise concentrated into a substantially reduced area. An optical detector receives the concentrated optical data signals from the second layer. An electrical connection extends from the optical detector to an external receiving device. The multilayer film or skin may be used, for example, in applications involving mobile free space optical communication platforms where low profile, volume and mass and/or enhanced platforms are important.
Type:
Grant
Filed:
June 16, 2015
Date of Patent:
July 12, 2016
Assignee:
Sunlight Photonics Inc.
Inventors:
Allan James Bruce, Michael Cyrus, Sergey Frolov
Abstract: An optical chip includes multiple laser cavities that each reflects a different portion of a light signal back and forth between reflective components. Each laser cavity guides one of the light signal portions through one or more waveguides. The one or more waveguides from different laser cavities being optically coupled to one another. A combiner receives the light signal portion from each of the laser cavities and combines the light signal portions into a light signal.
Type:
Grant
Filed:
February 9, 2012
Date of Patent:
June 28, 2016
Assignee:
Mellanox Technologies Silicon Photonics Inc.
Abstract: The light sensor and waveguide are positioned on a base such that a light signal guided by the waveguide is received at the light sensor. The waveguide includes a taper configured such that a ratio of a width of the waveguide at a first location in the taper:the width of the waveguide at a second location in the taper is greater than 1.2:1 where a length of the taper between the first location and the second location is less than 60 ?m.
Type:
Grant
Filed:
May 8, 2013
Date of Patent:
June 28, 2016
Assignee:
Mellanox Technologies Silicon Photonics Inc.
Inventors:
Zhi Li, Dazeng Feng, Shirong Liao, Zhou Zhou, C C Kung, Roshanak Shafiiha
Abstract: A flip-chip light-emitting diode (LED) unit includes a substrate, an electrode pad set disposed on the substrate, and three flip-chip LEDs disposed on the electrode pad set in a flip-chip manner and including one first LED and two second LEDs that are spaced apart from the first LED and that are electrically coupled to the first LED in a series configuration.
Abstract: The optical includes a waveguide positioned on a base and an optical component positioned on the base. The optical component is a light sensor that includes an active medium or a modulator that includes an active medium. The waveguide is configured to guide a light signal through the component such that the light signal is guided through the active medium. The device includes one or more heat control features selected from the group consisting of: placing one or more thermal conductors over a lateral side of a ridge of the active medium; extending thermal conductors from within the active component to a location outside of the active component, and tapering the ridge of the active medium within the perimeter of the active component.
Type:
Grant
Filed:
July 22, 2014
Date of Patent:
June 21, 2016
Assignee:
Mellanox Technologies Silicon Photonics Inc.
Abstract: A substantially planar waveguide for dynamically controlling the out-of-plane angle at which a light beam exits the waveguide. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, the waveguide may contain one or more taper regions such that the light beam exits the waveguide and propagates out-of-the-plane of the waveguide into an out-coupling medium at a propagation angle. In one example, the waveguide may contain one or more electrodes onto which one or more voltages may be applied. The magnitude of the propagation angle may be electronically controlled by altered by controlling or altering the magnitude of the one or more applied voltages.
Type:
Grant
Filed:
March 20, 2014
Date of Patent:
June 14, 2016
Assignee:
Vescent Photonics, Inc.
Inventors:
Michael H. Anderson, Scott R. Davis, Scott D. Rommel
Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
Abstract: An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB.
Abstract: The present invention is directed to a process for manufacturing a capacitor for an RFID device. The process utilizes stencils to spray-coat capacitor electrodes about a substrate, and in other embodiments, the process spray coats a first capacitor on a substrate, then an insulator on the first capacitor, and then a second capacitor on the insulator.