Patents Assigned to Renesas Technology
  • Patent number: 7667294
    Abstract: A P+ base drawing diffusion region is formed on a substrate having an SOI structure. N+ emitter diffusion regions are formed on both sides of the P+ base drawing diffusion region through isolation insulating films interposed therebetween. A P type SOI layer, which serves as a base diffusion region, is formed so as to surround the N+ emitter diffusion regions, and conductive layers are formed thereon. Further, an N+ collector diffusion region is formed so as to surround the conductive layers.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Tatsuhiko Ikeda
  • Patent number: 7666728
    Abstract: A method of manufacture of a semiconductor device includes forming a gate insulating film and gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Shuji Matsuo, Katsuhiro Uchimura, Yasuko Yoshida, Kota Funayama, Yutaka Takeshima
  • Patent number: 7667218
    Abstract: Disclosed herein is a phase change memory semiconductor integrated circuit device using a chalcogenide film that solves a problem that the operation temperature capable of ensuring long time memory retention is low due to low phase change temperature is and, at the same time, a problem that power consumption of the device is high since a large current requires to rewrite memory information due to low resistance. A portion of constituent elements for a chalcogenide comprises nitride, oxide or carbide which are formed to the boundary between the chalcogenide film and a metal plug as an underlying electrode and to the grain boundary of chalcogenide crystals thereby increasing the phase change temperature and high Joule heat can be generated even by a small current by increasing the resistance of the film.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Naoki Yamamoto, Norikatsu Takaura, Yuichi Matsui, Nozomu Matsuzaki, Kenzo Kurotsuchi, Motoyasu Terao
  • Patent number: 7667484
    Abstract: A voltage supply control circuit is arranged between a true ground voltage and a pseudo ground line. In an active mode, first and second control signals are at the “H” and “L” levels, respectively. In response to this, a first switch is turned on so that a first node is electrically coupled to a power supply voltage, and attains the “H” level. Further, a second switch is turned on to couple electrically the ground voltage to a second node. In a standby mode, the first and second control signals are at the “L” and “H” levels, respectively. In response to this, a third switch is turned on to couple electrically the first and second nodes together. Since the power supply voltage was electrically coupled to the first node according to the turn-on of the first switch in the active mode, the path of the control signal including the first node to the switch has accumulated charged charges.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Akira Tada
  • Patent number: 7668027
    Abstract: In order to easily perform a timing test on a memory interface included in a semiconductor device so as to satisfy a restriction on latency, the present invention provides a semiconductor device with the memory interface including: a clock output terminal that outputs a clock signal associated with an operation of a memory connected to the memory interface; a command terminal that outputs a command signal associated with control of a state of the memory; a data terminal that exchanges a data signal with the memory; and a data strobe terminal that exchanges a data strobe signal for establishing the data signal. This semiconductor device includes a testing terminal that outputs in advance a signal for starting a test on the memory interface apart from the command signal.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Kengo Imagawa, Masami Makuuchi, Ritsuro Orihashi, Yoshiharu Ikeda, Koichiro Eguchi
  • Patent number: 7666577
    Abstract: In an exposure step, a combination of a first photomask and a second mask is used. The first mask has a real pattern corresponding to the pattern actually formed on the film to be processed, and a dummy pattern added for controlling pattern pitch in the first photomask within a prescribed range; and the second photomask has a pattern isolating a real-pattern-formed region from a dummy-pattern-formed region. In forming the pattern, after forming a film to be processed on a substrate, a first mask is formed on the film to be processed, by lithography, using the first photomask, and a second mask is formed on the film to be processed, by lithography, using the second photomask. Thereafter, the film to be processed is etched off and removed using the first and second masks as masks to form the pattern.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Takuya Hagiwara
  • Patent number: 7667307
    Abstract: To actualize a reduction in the on-resistance of a small surface mounted package having a power MOSFET sealed therein. A silicon chip is mounted on a die pad portion integrated with leads configuring a drain lead. The silicon chip has, on the main surface thereof, a source pad and a gate pad. The backside of the silicon chip configures a drain of a power MOSFET and bonded to the upper surface of a die pad portion via an Ag paste. A lead configuring a source lead is electrically coupled to the source pad via an Al ribbon, while a lead configuring a gate lead is electrically coupled to the gate pad via an Au wire.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Kuniharu Muto, Toshiyuki Hata, Hiroshi Sato, Hiroi Oka, Osamu Ikeda
  • Patent number: 7667290
    Abstract: The present invention provides a semiconductor device comprising: a substrate; a first insulating film formed on a principal surface of the substrate; a second insulating film formed on the first insulating film; a plurality of fuses formed on the second insulating film; and a blocking layer disposed in the first and second insulating films, the blocking layer being formed of a material capable of reflecting laser light irradiated to blow the plurality of fuses. The blocking layer overlaps a region in which the plurality of fuses are formed when viewed from the principal surface of the substrate. The plurality of fuses may be each formed in two or more insulating film layers laminated to one another on the second insulating film.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yasuhiro Ido, Takeshi Iwamoto
  • Patent number: 7662686
    Abstract: A semiconductor device having a nonvolatile memory is reduced in size. In an AND type flash memory having a plurality of nonvolatile memory cells having a plurality of first electrodes, a plurality of word lines crossing therewith, and a plurality of floating gate electrodes disposed at positions which respectively lie between the plurality of adjacent first electrodes and overlap the plurality of word lines, as seen in plan view, the plurality of floating gate electrodes are formed in a convex shape, as seen in cross section, so as to be higher than the first electrodes. As a result, even when nonvolatile memory cells are reduced in size, it is possible to process the floating gate electrodes with ease. In addition, it is possible to improve the coupling ratio between floating gate electrodes and control gate electrodes of the word lines without increasing the area occupied by the nonvolatile memory cells.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tatsuya Fukumura, Yoshihiro Ikeda, Shunichi Narumi, Izumi Takesue
  • Patent number: 7664925
    Abstract: Access control unit sends to the access judging unit an access judging check request signal asking whether the requested address falls within one of the access-permitted areas registered in the access judging unit, the access judging unit checks whether the requested address falls within one of the access-permitted areas registered in it and returns to the access control unit an access judging check result signal indicating whether the access request is to be honored or rejected, and the access control unit permits access to the internal bus if the access judging check result signal indicates that the access request is to be honored, or rejects the access request otherwise.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Masakazu Ehama, Kazuhiko Tanaka, Koji Hosogi, Hiroaki Nakata
  • Patent number: 7663179
    Abstract: A semiconductor device having a rewritable nonvolatile memory cell including a first field effect transistor for memory, a circuit including a second field effect transistor and a circuit including a third field effect transistor, the transistors each including a gate insulating film formed over a semiconductor substrate, a gate electrode over the gate insulating film and sidewall spacers over the sidewalls of the corresponding gate electrode. Sidewall spacers of the first field effect transistor are different from those of at least the second field effect transistors. Also, the gate insulating film of the third field effect transistor has a thickness larger than that of the second field effect transistor and the gate electrode of the third field effect transistor has a length different from that of either the first field effect transistor or second field effect transistor.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Masaaki Shinohara, Kozo Watanabe, Fukuo Owada, Takashi Aoyama
  • Patent number: 7663176
    Abstract: For enhancing the high performance of a non-volatile semiconductor memory device having an MONOS type transistor, a non-volatile semiconductor memory device is provided with MONOS type transistors having improved performance in which the memory cell of an MONOS non-volatile memory comprises a control transistor and a memory transistor. A control gate of the control transistor comprises an n-type polycrystal silicon film and is formed over a gate insulative film comprising a silicon oxide film. A memory gate of the memory transistor comprises an n-type polycrystal silicon film and is disposed on one of the side walls of the control gate. The memory gate comprises a doped polycrystal silicon film with a sheet resistance lower than that of the control gate comprising a polycrystal silicon film formed by ion implantation of impurities to the undoped silicon film.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Takeshi Sakai, Yasushi Ishii, Tsutomu Okazaki, Masaru Nakamichi, Toshikazu Matsui, Kyoya Nitta, Satoru Machida, Munekatsu Nakagawa, Yuichi Tsukada
  • Patent number: 7662647
    Abstract: A burn-in input signal input to a burn-in circuit is delivered to an internal circuit through a selector. In response to a control signal from the burn-in circuit, the selector selects either the burn-in input signal or an input signal for operating the internal circuit. In the burn-in test process, a portion of an output signal is monitored to determine the degree of degradation of the internal circuit.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Eisaku Yamashita, Shigeru Takada
  • Patent number: 7662699
    Abstract: An object is to provide a technology capable of improving a manufacturing yield of semiconductor devices by preventing scattering of irregular-shaped scraps formed at the time of dicing. To achieve the above object, for dicing lines, by which an irregular-shaped outer periphery may possibly be cut off, among a plurality of dicing lines, formation of the dicing lines starts from an outside of a semiconductor wafer, and after the semiconductor wafer is cut off partway, formation of the dicing lines is ended before reaching the irregular-shaped outer periphery formed on a outer periphery of the semiconductor wafer. For other dicing lines, formation of the dicing lines starts from the outside of the semiconductor wafer, and after the semiconductor wafer is cut off, is ended outside the semiconductor wafer.
    Type: Grant
    Filed: November 24, 2005
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hajime Yui, Hisashi Muramatsu
  • Patent number: 7663193
    Abstract: A structure is adopted for a layout of an SRAM cell which provides a local wiring 3a between a gate 2a and gate 2b and connects an active region 1a and an active region 1b. This eliminates the necessity for providing a contact between the gate 2a and the gate 2b. Therefore, it is possible to reduce the size of a memory cell region C in a short side direction. Furthermore, a structure whereby a left end of a gate 2c is retreated from the gate 2a and a local wiring 3b which connects the active region 1b and gate 2c disposed in a diagonal direction is adopted. This allows the gate 2a to be shifted toward the center of the memory cell region C.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Nobuo Tsuboi, Motoshige Igarashi
  • Patent number: 7663168
    Abstract: In a pixel part, in a first active region, a photodiode and a transferring transistor are formed. In a second active region, a resetting transistor is formed. In a pixel part, in a first active region, a photodiode and a transferring transistor are formed. In a second active region, an amplifying transistor is formed. The first and second active regions are respectively the same in shape in image pixel parts. The resetting transistor and the amplifying transistor are shared by the pixel parts.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Kunihiko Hara, Hiroshi Kubo, Yasuyuki Endo, Masatoshi Kimura
  • Patent number: 7663897
    Abstract: Occurrence of power supply noise arising in connection with a step-down action at the time of turning on power supply is to be restrained. A step-down unit is provided with a switched capacitor type step-down circuit and a series regulator type step-down circuit, and stepped-down voltage output terminals of the step-down circuits are connected in common. The common connection of the stepped-down voltage output terminals of both step-down circuits makes possible parallel driving of both, selective driving of either or consecutive driving of the two. In the consecutive driving, even if the switched capacitor type step-down circuit is driven after driving the series regulator type step-down circuit first to supply a stepped-down voltage to loads, the switched capacitor type step-down circuit will need only to be compensated for a discharge due to the loads, and a peak of a charge current for capacitors can be kept low.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Masashi Horiguchi, Mitsuru Hiraki
  • Patent number: 7664161
    Abstract: A pulse generator for UWB transmission, lower power consumption, and suppression of LO leakage by nonuse of the LO signal. The pulse generator includes a clock generator (CLK) for giving clock of a predetermined period; a delay circuit (DLY) equipped with a function of controlling a delay time and for delaying the clock; a square-wave pulse generation circuit (SWPG) that receives information being spread by a spread code and modulates phases of square wave pulses that have a pulse width corresponding to a differential delay for one stage of the delay circuit; and an amplitude control unit (AMPC) that outputs an impulse sequence having the pulse width of the square wave in a predetermined amplitude and combines the impulses; and outputs pulses that have a predetermined envelope form.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Takayasu Norimatsu, Ryosuke Fujiwara, Masaru Kokubo, Akira Maeki
  • Patent number: 7664163
    Abstract: With the objective of enhancing receiving performance of a receiver with respect to pulse signals spread by spread codes, the receiver comprises an RF front-end section which performs amplification, an AD converter section which AD-converts signals outputted from the RF front-end section, a baseband section which inversely spreads the output of the AD converter section and performs signal detection and demodulation thereon, a reception environment measuring section which measures reception environment using the input signals of the baseband section, and a parameter setting section which sets parameters for respective parts on the basis of signals outputted from the reception environment measuring section. The parameter setting section sets the parameters for the respective parts to the optimum according to the environmental condition measured by the reception environment measuring section.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tatsuo Nakagawa, Ryosuke Fujiwara, Masayuki Miyazaki, Goichi Ono
  • Patent number: 7663354
    Abstract: The present invention provides a voltage clamping circuit which is operated in a stable manner with the simple constitution and a switching power source device which enables a high-speed operation. In a switching power source device, one of source/drain routes is connected to an input terminal to which an input voltage is supplied, a predetermined voltage to be restricted is supplied to a gate, and using a MOSFET which provides a current source between another source/drain route and a ground potential of the circuit, a clamp output voltage which corresponds to the input voltage is obtained from another source/drain route. The switching power source device further includes a first switching element which controls a current which is made to flow in an inductor such that the output voltage assumes a predetermined voltage and a second switching element which clamps an reverse electromotive voltage generated in the inductor when the first switching element is turned off to a predetermined potential.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: February 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Ryotaro Kudo, Koji Tateno