Abstract: A structure for making a LDMOS transistor (100) includes an interdigitated source finger (26) and a drain finger (21) on a substrate (15). Termination regions (35, 37) are formed at the tips of the source finger and drain finger. A drain (45) of a second conductivity type is formed in the substrate of a first conductivity type. A field reduction region (7) of a second conductivity type is formed in the drain and is wrapped around the termination regions for controlling the depletion at the tip and providing higher voltage breakdown of the transistor.
Abstract: A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
Abstract: A thyristor and a method for manufacturing the thyristor that includes providing a semiconductor substrate that has first and second major surfaces. A first doped region is formed in the semiconductor substrate, wherein the first doped extends from the first major surface into the semiconductor substrate. The first doped region has a vertical boundary that has a notched portion. A second doped region is formed in first doped region, wherein the second doped region extends from the first major surface into the first doped region. A third doped region is formed in the semiconductor substrate, wherein the third doped region extends from the second major surface into the semiconductor substrate.
Abstract: In one exemplary embodiment, a multi-chip connector is formed to have a first conductive strip that is suitable for attaching to a first semiconductor die and a second conductive strip that is attached suitable for attaching to a second semiconductor die.
Abstract: In one exemplary embodiment, a multi-chip connector is formed to have a first conductive strip that is attached to a first semiconductor die and a second conductive strip that is attached to a second semiconductor die.
Abstract: In one embodiment a transistor is formed with a gate structure having an opening in the gate structure. An insulator is formed on at least sidewalls of the opening and a conductor is formed on the insulator.
Abstract: In one embodiment, a semiconductor device comprises a semiconductor material having a first conductivity type with a body region of a second conductivity type disposed in the semiconductor material. The body region is adjacent a JFET region. A source region of the first conductivity type is disposed in the body region. A gate layer is disposed over the semiconductor material and has a first opening over the JFET region and a second opening over the body region.
Abstract: An integrated circuit package (60) has a substrate (12) with a first surface (51) for mounting a semiconductor die (20) and a second surface (52) defining a via (70). A lead (26) is formed by plating a conductive material to project outwardly from the second surface. The conductive material extends from the lead through the first via for coupling to the semiconductor die.
Abstract: In one embodiment, a self-gated transistor includes a sensing portion that generates a sense signal that is used to drive the self-gated transistor.
Abstract: A seconductor device (50) includes a semiconductor die (20) having a first surface (14) for forming electronic circuitry. A coating layer (16) formed on a second surface (15) of the semiconductor die has a color that contrasts with the color of the semiconductor die. The coating layer is patterned to expose a portion of the second surface to reveal information pertaining to the semiconductor device. The coating layer is patterned by directing a radiation beam (30) such as a laser to selectively remove material from the coating layer.
Abstract: In one embodiment, a pair of differential amplifiers have outputs coupled together. A signal received on one input results in signals coupled to the outputs that substantially cancel each other at the outputs.
Abstract: A receiver circuit (12) includes a first gate (24) that receives an input signal (VIN0, VIN1) and has an output (32, 34) for providing an output signal (VG0, VG1). A shifting circuit (20) is coupled for shifting the common mode potential of the input signal to produce a shifted signal (VSH0, VSH1). A second gate (22) has an input (27, 28) that receives the shifted signal and an output coupled to the output of the first gate.
Abstract: In one embodiment, a compound semiconductor vertical FET device (11) includes a first trench (29) formed in a body of semiconductor material (13), and a second trench (34) formed within the first trench (29) to define a channel region (61). A doped gate region (59) is then formed on the sidewalls and the bottom surface of the second trench (34). Source regions (26) are formed on opposite sides of the double trench structure (28). Localized gate contact regions (79) couple individual doped gate regions (59) together. Contacts (84,85,87) are then formed to the localized gate contact regions (79), the source regions (26), and an opposing surface (21) of the body of semiconductor material (13). The structure provides a compound semiconductor vertical FET device (11, 41, 711, 712, 811, 812) having enhanced blocking capability and improved switching performance.
Abstract: In one embodiment, an ECL logic device uses a capacitor to couple a positive voltage to an output and reduce the rise time of the output signal.
Abstract: In one embodiment, a lateral FET cell is formed in a body of semiconductor material. The body of semiconductor material includes alternating layers of opposite conductivity type that extend between a trench drain region and a trench gate structure. The trench gate structure controls at least one sub-surface channel region. The body of semiconductor material provides sub-surface drift regions to reduce on resistance without increasing device area.
Abstract: In one embodiment, a power MOSFET driver uses two different voltages for the operating voltage of the two output drivers of the power MOSFET driver.
Abstract: A power factor correction (PFC) circuit (10) includes a pulse width modulator (31) operating in response to a clock signal (CLK) for switching a coil current (ICOIL) over a charging period (TCHG) to correct a power factor at a node (32). The coil current discharges over a discharging period (TDSCHG) to develop an output voltage (VOUT) at an output (30). An oscillator (35) generates the clock signal to have a clock period (TCLK) longer than the sum of the charging and discharging periods, thereby operating in a discontinuous mode, and has an input (39) for sensing the input signal to modify the clock period.