Abstract: In one aspect, a method comprises: initializing a front end circuit of a wireless device into a first mode in which a radio frequency (RF) signal processing path comprises a low noise amplifier (LNA) having an output coupled to an RF filter; and in response to an RF signal received in the front end circuit having a level greater than a first threshold, reconfiguring the front end circuit into a second mode in which the RF filter is coupled to an input of the LNA.
Type:
Grant
Filed:
August 29, 2022
Date of Patent:
February 20, 2024
Assignee:
Silicon Laboratories Inc.
Inventors:
Hendricus De Ruijter, Thomas Edward Voor, Jeffrey L. Sonntag
Abstract: In one aspect, an apparatus comprises a transmit path including a power amplifier to receive, process and output a transmit radio frequency (RF) signal the transmit path comprising a power amplifier. A detection circuit coupled to the transmit path may be configured to: detect, during a first portion of a packet of the transmit RF signal, a level of the transmit RF signal at an input to the power amplifier; and detect, during a second portion of the packet of the transmit RF signal the level of the transmit RF signal at an output of the power amplifier. Based at least in part on the detected level at at least one of the power amplifier input or output, a level of at least one component of the transmit path upstream to the power amplifier is to be updated, to control a transmit power variation of the transmit RF signal.
Type:
Grant
Filed:
August 29, 2022
Date of Patent:
February 13, 2024
Assignee:
Silicon Laboratories Inc.
Inventors:
Thomas Edward Voor, Hendricus De Ruijter, Richard Hendricks
Abstract: An apparatus includes a radio-frequency (RF) apparatus, and a multi-band matching balun coupled to the RF apparatus. The multi-band matching balun including a plurality of capacitors and a plurality of inductors. None of the plurality of capacitors and none of the plurality of inductors is variable or tunable.
Abstract: An apparatus includes a substrate and a loop antenna formed using the substrate. The loop antenna includes a set of gaps formed to isolate a first part of the loop antenna from a second part of the loop antenna.
Type:
Grant
Filed:
March 25, 2022
Date of Patent:
February 6, 2024
Assignee:
Silicon Laboratories Inc.
Inventors:
Attila Zolomy, Thomas E. Voor, Zoltan Vida
Abstract: In one embodiment, an analog-to-digital converter includes: a sum circuit to receive an analog input signal and a feedback reference signal and generate a sum signal; a feedback circuit coupled to the sum circuit to provide the feedback reference signal to the sum circuit; a filter coupled to the sum circuit to receive the sum signal and generate a filtered signal; and a punctured quantizer coupled to the filter to receive the filtered signal and quantize the filtered signal to a digital output and to output the digital output and to provide the digital output to the feedback circuit.
Abstract: An apparatus includes an RF apparatus, and a multi-band matching balun coupled to the RF apparatus. The multi-band matching balun includes at least one three-element frequency-dependent resonator (TEFDR) and at most three reactive elements.
Abstract: An apparatus includes a module. The module includes an antenna structure. The antenna structure includes a printed monopole antenna. The antenna structure further includes first and second inductive-capacitive (LC) resonant networks that are coupled to the printed monopole antenna. The antenna structure further includes a double slotted loop coupled to the first and second LC resonant networks.
Type:
Grant
Filed:
September 30, 2021
Date of Patent:
February 6, 2024
Assignee:
Silicon Laboratories Inc.
Inventors:
Tuomas Hänninen, Pasi Rahikkala, Attila Zolomy
Abstract: An apparatus includes a radio-frequency (RF) receiver, which includes an automatic gain-control (AGC) circuit to use a gain signal to set a gain of front-end circuitry of the RF receiver. The RF receiver further includes an interference-detection circuit to use a value of the gain signal to detect an interference signal.
Abstract: In one embodiment, an apparatus includes: a clock generator to receive a reference clock signal and generate a first clock signal using the reference clock signal; a counter coupled to the clock generator to maintain a first count regarding a number of cycles of the first clock signal; and a controller coupled to the counter. The controller may be configured to detect a potential security violation when the first count varies from a predetermined value.
Abstract: A robotic integrated circuit placement system includes a test board comprising a socket for holding an integrated circuit, a tester coupled to the test board, a chip tray having a plurality of slots for storing respective integrated circuits including the integrated circuit, and a robotic arm system. The robotic arm system includes a robotic arm having a stepper motor for controlling a position of an end of the robotic arm, a camera, and a controller coupled to the robotic arm and adapted to operate the robotic arm automatically. The controller performs image processing on images acquired by the camera, and moves the integrated circuit between the chip tray and the socket using the robotic arm in response to the image processing.
Type:
Grant
Filed:
October 21, 2019
Date of Patent:
January 23, 2024
Assignee:
Silicon Laboratories Inc.
Inventors:
Ting Yit Wee, Shang-Gil Ghang, Sorin Adrian Badiu
Abstract: An apparatus includes a module comprising an antenna having at least one antenna component. The apparatus further includes at least one tuning component coupled to the at least one antenna component. The at least one tuning component is external to the module.
Abstract: An apparatus includes a digitally controlled oscillator (DCO), which includes an inductor coupled in series with a first capacitor. The DCO further includes a second capacitor coupled in parallel with the series-coupled inductor and first capacitor, a first inverter coupled in parallel with the second capacitor, and a second inverter coupled back-to-back to the first inverter. The DCO further includes a digital-to-analog-converter (DAC) to vary a capacitance of the first capacitor.
Abstract: In one embodiment, an apparatus includes: a radio frequency (RF) front end circuit to receive and downconvert a RF signal to a second frequency signal, the RF signal comprising an orthogonal frequency division multiplexing (OFDM) transmission; a digitizer coupled to the RF front end circuit to digitize the second frequency signal to a digital signal; and a baseband processor coupled to the digitizer to process the digital signal. The baseband circuit comprises a first circuit having a first plurality of correlators having an irregular comb structure, each of the first plurality of correlators associated with a carrier frequency offset and to calculate a first correlation on a first portion of a preamble of the OFDM transmission.
Abstract: An apparatus includes a digitally controlled oscillator (DCO), which includes an inductor coupled in series with a first capacitor. The DCO further includes a second capacitor coupled in parallel with the series-coupled inductor and first capacitor, a first inverter coupled in parallel with the second capacitor, and a second inverter coupled back-to-back to the first inverter. The DCO further includes a digital-to-analog-converter (DAC) to vary a capacitance of the first capacitor.
Abstract: A bias circuit for a low noise amplifier of a front end interface of a radio frequency communication device including a bias generator providing a bias voltage on a bias node for the low noise amplifier, a first resistive device coupled between the bias node and an input of the low noise amplifier, a first switch coupled in parallel with the first resistive device, and mode control circuitry receiving a mode signal indicative of a mode change, in which the mode control circuitry, in response to a mode change, momentarily activates the first switch to bypass the first resistive device and momentarily increases current capacity of the bias generator. The mode control circuitry may also momentarily activate a second switch to bypass a second resistive device of the bias circuit. The mode control circuitry may increase a sink current of the bias generator in response to the mode change.
Type:
Grant
Filed:
April 27, 2021
Date of Patent:
November 7, 2023
Assignee:
Silicon Laboratories Inc.
Inventors:
Luigi Panseri, Yu Su, Mustafa H. Koroglu
Abstract: An apparatus includes a radio-frequency (RF) receiver for receiving RF signals. The RF receiver includes a plurality of modulation signal detectors (MSDs) to generate a plurality of detection signals when a plurality of RF signals modulated using a plurality of modulation schemes are detected. The RF receiver further includes a controller to cause reception of the plurality of RF signals in response to the plurality of detection signals.
Abstract: Systems and methods are provided to simultaneously determine both angle of arrival (AoA) and angle of departure (AoD) of a signal transmitted between two or more radio frequency (RF)-enabled wireless devices (e.g., such as BLE modules). The disclosed systems and methods may be so implemented in one embodiment to determine AoD even in the case where the transmitting wireless device is at the same time operating in a departure (or AoD) transmitting mode by transmitting a RF signal from multiple antenna elements of at least one switched antenna array using a given switching pattern or sequence implemented by an array switch.
Abstract: In one embodiment, an apparatus includes: a low noise amplifier (LNA) to receive and amplify a radio frequency (RF) signal, the LNA having a first controllable gain; a mixer to downconvert the RF signal to a second frequency signal; a programmable gain amplifier (PGA) coupled to the mixer to amplify the second frequency signal, the PGA having a second controllable gain; a digitizer to digitize the second frequency signal to a digitized signal; a demodulator coupled to the digitizer to demodulate the digitized signal; an automatic gain control (AGC) circuit to control one or more of the first controllable gain and the second controllable gain; and an AGC settling circuit to cause the demodulator to begin operation in response to determining that the AGC circuit has settled.
Type:
Grant
Filed:
April 29, 2021
Date of Patent:
October 31, 2023
Assignee:
Silicon Laboratories Inc.
Inventors:
Robert M. Gorday, Guner Arslan, Marc Leroux, Pascal Blouin
Abstract: An apparatus for measuring a current being supplied to a load includes a first pass transistor to couple a first sense resistance to the load when the first pass transistor is enabled and a second pass transistor to couple a second sense resistance to the load when the second pass transistor is enabled. An error amplifier determines a difference between a voltage being supplied to the load and a reference voltage and to supplies an error amplifier output signal according to the difference. A switch couples the error amplifier output signal to a gate of the first pass transistor or to a gate of the second pass transistor. Control logic controls the switch according to a value of the current being supplied to the load. The voltage being supplied to the load is controlled using the error amplifier output signal that is selectively coupled to the gate of the first pass transistor or the gate of the second pass transistor.
Abstract: In one embodiment, an apparatus includes: a sensor to sense real world information; a digitizer coupled to the sensor to digitize the real world information into digitized information; a signal processor coupled to the digitizer to process the digitized information into a spectrogram; a neural engine coupled to the signal processor, the neural engine comprising an autoencoder to compress the spectrogram into a compressed spectrogram; and a wireless circuit coupled to the neural engine to send the compressed spectrogram to a remote destination, to enable the remote destination to process the compressed spectrogram.