Abstract: Systems and methods are disclosed that may be implemented to process a received RF spectrum that includes both analog modulated and digitally modulated RF signals to blend between a digital demodulated signal and an analog demodulated signal obtained from the received RF spectrum prior to performing one or more signal quality mitigation operations on the blended signal (e.g., such as stereo blend, hi-cut, etc.). In one embodiment, the digital demodulated signal and the analog demodulated signal may include at least some of the same information, e.g., such as information from simulcast digital and analog channels that are obtained from the same received RF spectrum.
Abstract: A technique decouples a MEMS device from sources of strain by forming a MEMS structure with suspended electrodes that are mechanically anchored in a manner that reduces or eliminates transfer of strain from the substrate into the structure, or transfers strain to electrodes and body so that a transducer is strain-tolerant. The technique includes using an electrically insulating material embedded in a conductive structural material for mechanical coupling and electrical isolation.
Type:
Grant
Filed:
July 12, 2013
Date of Patent:
March 29, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
Emmanuel P. Quevy, Daniel N. Koury, Jr.
Abstract: Stacked layers of non-continuous opaque layer structures are disclosed herein that may be configured to block radiation such as visible light or other forms of light, while at the same time allowing penetration of ambient gases. In one example, such non-continuous opaque layer structures may be configured as stacked non-continuous metal layer structures that together fully block penetration of radiation while at the same provide sufficient open spaces between and/or within the metal layer segments of a given integrated circuit layer to meet maximum metal spacing rules. In another example, such non-continuous opaque layer structures may be configured as capacitive structures.
Type:
Grant
Filed:
March 14, 2013
Date of Patent:
March 15, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
Bruce P. Del Signore, John O. O'Connell
Abstract: A contactor uses a pogo block in a first configuration as a direct integrated circuit test socket and the contactor can be reconfigured to provide a pogo block assembly to interface between a main test printed circuit board (PCB) and a daughter card that is dedicated to a specific device handler and/or a specific package type that can be different from the main test PCB. A pogo block is inserted into a thick frame with an alignment plate for contactor use in which a device under test fits into a recess in the frame through an alignment plate to align the device under test to make contact with electrical contacts of the contactor. The frame and guide plate can be removed and a thinner frame coupled to the contactor, which changes its function to a pogo block assembly.
Type:
Grant
Filed:
February 20, 2013
Date of Patent:
March 1, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
Larry R. Rose, Craig N. Gabelmann, Wenshui Zhang
Abstract: A receiver includes a first amplifier having an input for receiving a radio frequency (RF) signal, and an output for providing an amplified RF signal, a switch section for selectively switching the RF signal onto one of a plurality of nodes, and a filter section comprising a plurality of filters coupled to respective ones of the plurality of nodes. A first filter of the plurality of filters comprises a first variable capacitor coupled in parallel with an inductance leg between a corresponding one of the plurality of nodes and a power supply voltage terminal, wherein the first variable capacitor has a capacitance that varies in response to a tuning signal, and the inductance leg comprises a first inductorin series with an effective resistance, wherein the effective resistance has a value related to an upper cutoff frequency to be tuned by the first filter.
Abstract: A phase-locked loop (PLL) includes a time to voltage converter to convert a phase error between a reference signal and a feedback signal of the PLL to one or more voltage signals. An oscillator-based analog to digital converter (ADC) receives the one or more voltage signals and controls one or more oscillators according to the voltages. The oscillator-based ADC determines a digital value corresponding to the phase error based on the frequencies of the one or more oscillators.
Abstract: In an embodiment, an apparatus includes a component of a receiver path to receive and process an incoming signal. At least one element of the component is controllable based on a DC output of the component, to compensate for a second order intermodulation product of the apparatus. As one example, the component is a differential amplifier including a first transistor and a second transistor.
Abstract: An apparatus is formed on a substrate including at least one semiconductor device. The apparatus includes a microelectromechanical system (MEMS) device comprising at least one of a portion of a first structural layer and a portion of a second structural layer formed above the first structural layer. The second structural layer has a thickness substantially greater than a thickness of the first structural layer. In at least one embodiment, the MEMS device includes a first portion of the second structural layer and a second portion of the second structural layer. In at least one embodiment, the MEMS device further comprises a gap between the first portion of the second structural layer and the second portion of the second structural layer. In at least one embodiment, the gap has a width at least one order of magnitude less than the thickness of the second structural layer.
Type:
Grant
Filed:
September 24, 2014
Date of Patent:
February 16, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
Emmanuel P. Quevy, Carrie W. Low, Jeremy Ryan Hui, Zhen Gu
Abstract: A method includes generating, based on at least one received signal, a first packet stream and a second packet stream. One of the first and second packet streams includes a packet associated with the other of the first and second packet streams. The first and second packet streams indicate respective buffer configuration sizes. The method further includes, prior to determining the respective buffer configuration sizes indicated by the first and second packet streams, allocating respective first and second portions of a dejitter buffer to the first and second packet streams. In at least one embodiment of the method, the allocating is performed by hardware coupled to the dejitter buffer.
Abstract: An apparatus includes an input terminal to receive a radio frequency (RF) signal and to communicate the RF signal to a low noise amplifier (LNA) via an input signal path, and a capacitor attenuator coupled to the input terminal to attenuate the RF signal by a controllable amount and having a first portion controllable to include a used part configured on the input signal path and an unused part coupled between the input signal path and an AC reference node, and a second portion coupled between the LNA and the AC reference node.
Abstract: Common mode transient immunity for an isolation system is improved by using a common transient suppression circuit coupled to a receive circuit to suppress transients in signals received by the receive circuit that were transmitted from a transmit side of the isolation barrier using optical, magnetic, inductive, or other mechanisms.
Type:
Grant
Filed:
December 30, 2013
Date of Patent:
February 9, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
Michael J. Mills, Timothy J. Dupuis, Riad Wahby, Siddharth Sundar, Jeffrey L. Sonntag
Abstract: Systems and methods are disclosed for rapid detection of digital content within received radio frequency (RF) signals. The disclosed embodiments digitize received RF signals and apply a cyclic prefix correlation to generate correlation values that are accumulated over a plurality of symbol times. The accumulated correlation values are then stored in a dump register after these plurality of symbol times, and the accumulated correlation values are used to determine whether or not digital content is present within the broadcast channel being analyzed. The disclosed embodiments are useful, for example, in determining whether DAB (Digital Radio Broadcast) digital content is present within audio broadcast channels by detecting the cyclic prefix within the DAB transmissions.
Abstract: A technique for tracking changes in bias conditions of a microelectromechanical system (MEMS) device includes applying an electrode bias signal to an electrode of the MEMS device. The technique includes applying a mass bias signal to a mass of the MEMS device suspended from a substrate of the MEMS device. The technique includes generating the mass bias signal based on a target mass-to-electrode bias signal level and a signal level of the electrode bias signal.
Abstract: Die-to-die communication links for receiver integrated circuit dies within multi-die systems and related methods are disclosed for radio frequency (RF) receivers. The disclosed embodiments provide die-to-die communication links that allow for direct communication of operating parameters between receiver integrated circuit dies and other integrated circuit dies within a multi-die system so that the operation of receive path circuitry can be adjusted without requiring intervention from an external host processor integrated circuit. A variety of operating parameter information can be communicated through the die-to-die communication links so that the integrated circuit dies can quickly adjust to changing signal conditions without requiring intervention by the external host processor integrated circuit.
Type:
Grant
Filed:
December 18, 2014
Date of Patent:
February 2, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
John B. Youngblood, Guner Arslan, J. A. Bolton, Trenton J. Grale, Vitor Pereira, Jeffrey A. Tindle, David S. Trager, Yan Zhou
Abstract: A method includes alternately coupling a selected one of a plurality of current sources and two or more of the plurality of current sources to a first terminal of a bipolar device during first and second phases of a modulator cycle of a plurality of modulator cycles. The method further includes providing sampled voltages from the first terminal of the bipolar device to a modulator to produce a modulator output signal, filtering the modulator output signal to produce a filtered output signal using a back-end filter having an impulse response, and determining a temperature in response to the filtered output signal.
Abstract: A technique decouples a MEMS device from sources of strain by forming a MEMS structure with suspended electrodes that are mechanically anchored in a manner that reduces or eliminates transfer of strain from the substrate into the structure, or transfers strain to electrodes and body so that a transducer is strain-tolerant. The technique includes using an electrically insulating material embedded in a conductive structural material for mechanical coupling and electrical isolation. An apparatus includes a MEMS device including a first electrode and a second electrode, and a body suspended from a substrate of the MEMS device. The body and the first electrode form a first electrostatic transducer. The body and the second electrode form a second electrostatic transducer. The apparatus includes a suspended passive element mechanically coupled to the body and electrically isolated from the body.
Type:
Grant
Filed:
September 18, 2013
Date of Patent:
January 26, 2016
Assignee:
Silicon Laboratories Inc.
Inventors:
Emmanuel P. Quevy, Daniel N. Koury, Jr.
Abstract: A method includes receiving a count corresponding to a number of peaks of a resonant signal that exceed a reference signal and comparing the count to a floating count window defined by a first count threshold and a second count threshold, the first count threshold is larger than the second count threshold. The method further includes selectively shifting the floating count window in a direction of the count when the count falls outside of the floating count window.
Abstract: Quantization noise in a fractional-N phase-locked loop (PLL) is canceled using a capacitor-based digital to analog converter (DAC). A phase error is detected between a reference signal and a feedback signal in the PLL. A charge pump circuit charges a first capacitor circuit based on the phase error to generate a phase error voltage corresponding to the phase error. The capacitor based DAC generates a quantization error correction voltage based on a digital value corresponding to the quantization error, which is then combined with the phase error voltage to cancel the quantization error.
Abstract: A system and method of calibrating a phase-locked loop (PLL) having at least a phase detector, a frequency divider and a local oscillator are provided. The disclosed example includes generating a lock window signal based on a feedback signal generated by the frequency divider where the lock window signal may form an active lock window relative to each significant edge of the feedback signal, generating a sampled window signal based on samples of the lock window signal at each significant edge of a reference signal, and estimating a phase offset between the reference signal and the feedback signal based on a number of consecutive samples of the sampled window signal that are active.
Abstract: A phase-locked loop (PLL) is provided. The PLL may include a local oscillator configured to generate an output signal, a feedback divider configured to generate a feedback signal in response to the output signal, a phase detector configured to operate the local oscillator based on a comparison between a reference signal and the feedback signal, and a reset controller in communication with each of the phase detector and the feedback divider. The reset controller may be configured to hold each of the phase detector and the frequency divider in reset, and enable each of the phase detector and the frequency divider such that at least the feedback signal is in substantial synchronization with the reference signal.