Abstract: An inertial sensor for sensing an external acceleration includes: a first and a second proof mass; a first and a second capacitor formed between first and second fixed electrodes and the first proof mass; a third and a fourth capacitor formed between third and fourth fixed electrodes and the second proof mass; a driving assembly configured to cause an antiphase oscillation of the first and second proof masses; a biasing circuit configured to bias the first and third capacitors, thus generating first variation of the oscillation frequency in a first time interval, and to bias the second and fourth capacitors, thus generating first variation of the oscillation frequency in a second time interval; a sensing assembly, configured to generate an differential output signal which is a function of a difference between a value of the oscillating frequency during the first time interval and a value of the oscillating frequency during the second time interval.
Type:
Grant
Filed:
August 29, 2018
Date of Patent:
October 20, 2020
Assignee:
STMicroelectronics S.r.l.
Inventors:
Alessandro Tocchio, Francesco Rizzini, Carlo Valzasina, Giacomo Langfelder, Cristiano Rocco Marra
Abstract: An integrated device for driving a lighting load, such as a LED, has a first memory element, configured to store a nominal duty-cycle at a nominal supply voltage. An actual voltage acquisition element is configured to detect an actual supply voltage. A processing unit is coupled to the first memory element and to the actual voltage acquisition element and configured to calculate a voltage compensated duty-cycle. A driver unit is coupled to the processing unit and is configured to be supplied according to the voltage compensated duty-cycle.
Abstract: A MEMS inertial sensor device has a package and a gyroscopic sensor, an accelerometric sensor, and an ASIC electronic circuit integrated within the package. The ASIC is operatively coupled to the gyroscopic sensor and the accelerometric sensor for supplying at an output a gyroscopic signal indicative of an angular velocity and an acceleration signal indicative of an acceleration acting on the MEMS inertial sensor device. The ASIC is provided with a processing module, which may be of a purely hardware type, for processing jointly the gyroscopic signal and the accelerometric signal and determining a bias value present on the gyroscopic signal.
Abstract: An integrated circuit system-on-chip (SOC) includes a semiconductor substrate, a plurality of components made up of transistors formed in the substrate, and a plurality of interconnection lines providing electrical connectivity among the components. Use of a channel-less design eliminates interconnection channels on the top surface of the chip. Instead, interconnection lines are abutted to one another in a top layer of metallization, thus preserving 5-10% of chip real estate. Clock buffers that are typically positioned along interconnection channels between components are instead located within regions of the substrate that contain the components. Design rules for channel-less integrated circuits permit feed-through interconnections and exclude multi-fanout interconnections.
Abstract: In an embodiment, a clock generator has a variable-modulus frequency divider that receives a high-frequency clock signal and outputs a divided clock signal having a frequency controlled by a modulus-control signal generated by a temperature-compensation circuit. A jitter filter is coupled to the output of the variable-modulus frequency divider and to the temperature-compensation circuit and generates a compensated clock signal having switching edges that are delayed, with respect to the divided clock signal, by a time correlated to a quantization-error signal.
Type:
Grant
Filed:
November 12, 2019
Date of Patent:
October 20, 2020
Assignee:
STMicroelectronics S.r.l.
Inventors:
Giorgio Mussi, Giacomo Langfelder, Carlo Valzasina, Gabriele Gattere
Abstract: Electrostatic discharge (ESD) protection is provided in using a supply clamp circuit formed by an ESD event actuated transistor device. A bias current is generated in response to operation of a voltage independent current generator circuit. The bias current is sourced to ensure that the transistor device is deactuated after the ESD event is dissipated.
Abstract: An electronic device includes a support wafer, an electronic chip and an encapsulating block for the electronic chip above the support wafer. The support wafer is provided with a first network of electrical connections and a second network of electrical connections formed solely by tracks. First electrical connection elements are interposed between first front electrical contacts of the electronic chip and rear electrical contacts of the first network. Second electrical connection elements are interposed between second front electrical contacts of the electronic chip and internal electrical contact zones of the tracks of the second network. The first network includes front external electrical contacts and the tracks exhibiting external electrical contact zones.
Type:
Grant
Filed:
August 23, 2018
Date of Patent:
October 20, 2020
Assignees:
STMicroelectronics (Grenoble 2) SAS, STMicroelectronics (Alps) SAS
Inventors:
David Auchere, Laurent Schwarz, Deborah Cogoni, Eric Saugier
Abstract: A touchscreen resistive sensor includes a network of resistive sensor branches coupled to a number of sensor nodes arranged at touch locations of the touchscreen. A test sequence is performed by sequentially applying to each sensor node a reference voltage level, jointly coupling to a common line the other nodes, sensing a voltage value at the common line, and declaring a short circuit condition as a result of the voltage value sensed at the common line reaching a short circuit threshold. A current value level flowing at the sensor node to which the reference voltage level is applied is sensed and a malfunction of the resistive sensor branch coupled with the sensor node to which a reference voltage level is applied is generated as a result of the current value sensed at the sensor node reaching an upper threshold or lower threshold.
Type:
Grant
Filed:
July 26, 2019
Date of Patent:
October 20, 2020
Assignee:
STMicroelectronics S.r.l.
Inventors:
Calogero Marco Ippolito, Angelo Recchia, Antonio Cicero, Pierpaolo Lombardo, Michele Vaiana
Abstract: A voltage doubler circuit supports operation in both a positive voltage boosting mode to positively boost voltage from a first node to a second node and a negative voltage boosting mode to negatively boost voltage from the second node to the first node. The voltage doubler circuit is formed by transistors of a same conductivity type that share a common bulk that is not tied to a source of any of the voltage doubler circuit transistors. A bias generator circuit is coupled to receive a first voltage from the first node and second voltage from the second node. The bias generator circuit operates to apply a lower one of the first and second voltages to the common bulk.
Abstract: A method for encoding a data value to be transmitted on an SPI serial bus includes an operation to modify a status register of a memory, at least at one chosen time instant, as a function of all or part of the data value to be transmitted.
Abstract: A memory device includes a memory array powered between a virtual supply and virtual ground nodes. A dummy memory array is powered between first and second nodes. A virtual supply generation circuit generates a virtual supply voltage at the virtual supply node as a function of a first control voltage. A virtual ground generation circuit generates a virtual ground at the virtual ground node as a function of a second control voltage. A first control voltage generation circuit coupled between the first node and a power supply voltage generates the first control voltage as tracking retention noise margin (RNM) of the memory array, the first control voltage falling as the RNM decreases. A second control voltage generation circuit coupled between the second node and ground generates the second control voltage as tracking RNM of the memory array, the second control voltage rising as the RNM decreases.
Abstract: A Global Navigation Satellite System (GNSS) receiver includes a Temperature Compensated Crystal Oscillator (TCCO) circuit. A micro jump of the TCCO circuit is detected by monitoring wide band phase values and carrier to noise ratio estimate values for each tracking channel of the tracking modules for the GNSS receiver. In response to a detected micro-jump, a frequency correction is calculated and applied to numerically controlled oscillators of phase/frequency lock loop circuits within tracking modules.
Abstract: A memory array includes memory cells of Z2-FET type arranged in rows and columns, wherein each memory cell includes a MOS-type selection transistor and a first region of a first conductivity type that is shared in common with a drain region of the first conductivity type of the selection transistors. The selection transistors of a same column of the memory array have a common drain region, a common source region, and a common channel region.
Type:
Grant
Filed:
November 26, 2018
Date of Patent:
October 13, 2020
Assignee:
STMicroelectronics SA
Inventors:
Hassan El Dirani, Thomas Bedecarrats, Philippe Galy
Abstract: An optical waveguide includes a glass waveguide body and a waveguide core through which optical radiation propagates. The waveguide core includes: a body portion extending within the waveguide body, a coupling portion extending at the surface of the waveguide body, and an S-bent intermediate portion coupling the body portion and the coupling portion. An optical coupling arrangement (e.g., for coupling one or more optical fibers to a silicon photonics device) includes one such optical waveguide and a second optical waveguide including a respective waveguide body and one or more waveguide members. The second optical waveguide is coupled with the first optical waveguide with the waveguide member(s) facing the coupling portion of the first optical waveguide.
Abstract: A semiconductor substrate has a back face and a front face and includes a semiconductor well that is electrically isolated from the semiconductor substrate. A device is configured to detect a thinning of the semiconductor substrate from the back face. The device includes at least one trench that extends within the semiconductor well between two peripheral locations from the front face down to a location situated at a distance from a bottom of the semiconductor well. The trench is electrically isolated from the semiconductor well. A detection circuit is configured to measure a physical quantity representative of well electrical resistance between two contact areas respectively situated on either side of the at least one first trench.
Abstract: A light projection system includes a GPU that receives video data containing video images, defines a two-dimensional grid (each element of which represents a position of a light beam at a different time), designates which elements of the two-dimensional grid correspond to positions of the light beam in a designated area, designates which elements correspond to positions of the light beam outside of the designated area with some positions outside being designated as calibration positions, maps each element corresponding to positions in the designated area to a corresponding pixel of a frame of a video image, and maps elements corresponding to calibration positions to calibration pixels. An ASIC receives the mapped pixels and mapped calibration pixels from the GPU, and generates a beam position control signal therefrom. A controller controls a movable mirror based on the beam position control signal.
Abstract: A planarization structure is formed with a planar upper face enclosing a relief projecting from a planar substrate. The process used deposits a layer of a first material over the reliefs and then forms a layer of a second material with a planar upper face. This second material may be etched selectively with respect to the first material. The second layer is processed so that the protuberances of the first material are uncovered. A planarizing is then performed on the first material as far as the layer of the second material by selective chemical-mechanical polishing with respect to the second material.
Abstract: A test circuit includes a BIST clock generator and a functional clock generator. A first multiplexer selectively passes the BIST clock or the functional clock as a selected clock in response to a clock selection signal. BIST logic operates based upon the BIST clock. Functional logic operating based upon the functional clock signal. A memory operates based upon the selected clock. When the test circuit is operating in BIST mode, a clock selection circuit receives and passes a BIST signal as the clock selection signal. When the test circuit is operating in a shift phase of a scan test mode, it generates the clock selection signal as asserted, and when the test circuit is operating in the capture phase of the scan test mode, it generates the clock signal as equal to a last bit received from a scan chain.
Abstract: A standard cell layout for a data storage circuit includes a latch and an initialization circuit. Metallization levels over the standard cell layout support circuit interconnections. At least one metallization level is provided for metal programming of an initialization configuration of the data storage circuit. The at least one metallization level may have: a first wiring layout for interconnecting the initialization circuit to the latch for configuration programming of the data storage circuit as an initialization in reset device (assertion of an initialization signal causing the data storage circuit data output to be reset), or a second wiring layout for interconnecting the initialization circuit to the latch for configuration programming of the data storage circuit as an initialization in set device (assertion of the initialization signal causing the data storage circuit data output to be set).
Abstract: A device of protection against electrostatic discharges is formed in a semiconductor substrate of a first conductivity type that is coated with a semiconductor layer of a second conductivity type. A buried region of the second conductivity type is positioned at an interface between the semiconductor substrate and the semiconductor layer. First and second wells of the first conductivity type are formed in the semiconductor layer and a region of the second conductivity type is formed in the second well. A stop channel region of the second conductivity type is provided in the semiconductor layer to laterally separating the first well from the second well, where no contact is present between this stop channel region and either of the first and second wells.