Patents Assigned to STMicroelectronics, Inc.
  • Patent number: 11037864
    Abstract: The present disclosure is directed to a lead frame including a die pad with cavities, and methods for attaching a semiconductor die to the lead frame. The cavities allow for additional adhesive to be formed on the die pad at the corners of the semiconductor die, and prevent the additional adhesive from overflowing on to active areas of the semiconductor die.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: June 15, 2021
    Assignee: STMicroelectronics, Inc.
    Inventors: Rennier Rodriguez, Maiden Grace Maming, Jefferson Talledo
  • Patent number: 11030289
    Abstract: A method includes sensing through time-of-flight measurements a distance of an object from an electronic device, sensing motion of the electronic device, sensing acoustic signals received by the electronic device, and detecting the presence of a human proximate the electronic device based on the sensed distance, motion and acoustic signals. Access to the electronic device is controlled based on whether a human is detected as being present.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 8, 2021
    Assignee: STMicroelectronics, Inc.
    Inventors: Xiaoyong Yang, Sankalp Dayal
  • Patent number: 11025357
    Abstract: Systems, methods and devices are provided to improve management and accuracy of timestamps associated with sensor-based data. An indication is received of a sensor event associated with data samples provided from a sensor having an output data rate. A respective timestamp is assigned to each of the data samples. Assigning the respective timestamp may include, responsive to a determination that the indicated event is an interrupt event, calculating an actual data sampling interval based at least in part on time intervals between previous sensor events and a on a quantity of the one or more data samples.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 1, 2021
    Assignee: STMicroelectronics, Inc.
    Inventors: Karimuddin Sayed, Ashish Bhargava, Chandandeep Singh Pabla, Mahesh Chowdhary
  • Patent number: 10979805
    Abstract: A method and apparatus for auto-directive adaptive beamforming for a microphone array using microelectromechanical systems (MEMS) sensor orientation information are provided. The microphone array captures audio and the MEMS sensor detects an orientation of the microphone array. A direction of arrival of a source signal is estimated based on the data representative of the audio. A change in an orientation of the microphone array is detected based on the orientation and the direction of arrival is compensates based on the change in the orientation of the microphone array. The apparatus pre-steers a beam of a beam pattern of the microphone array based on the compensated direction of arrival to retain the source signal in a broadside of the microphone array and performs adaptive wideband beamforming to null one or more interfering sources in the beam pattern while retaining the source signal in the broadside of the microphone array.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 13, 2021
    Assignees: STMicroelectronics, Inc., STMicroelectronics International N.V.
    Inventors: Mahesh Chowdhary, Prasanth Logaraman, Arun Kumar, Rajendar Bahl
  • Patent number: 10943602
    Abstract: A method and apparatus for classifying a spatial environment as open or enclosed are provided. In the method and apparatus, one or more microphones detect ambient sound in a spatial environment and output an audio signal representative of the ambient sound. A processor determines a spatial environment impulse response (SEIR) for the audio signal and extracts one or more features of the SEIR. The processor classifies the spatial environment as open or enclosed based on the one or more features of the SEIR.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: March 9, 2021
    Assignees: STmicroelectronics International N.V., STMicroelectronics, Inc.
    Inventors: Mahesh Chowdhary, Arun Kumar, Ghanapriya Singh, Rajendar Bahl
  • Patent number: 10892281
    Abstract: A transistor is fabricated by growing an epitaxial layer of semiconductor material on a semiconductor layer and forming an opening extending through the epitaxial layer at the gate location. This opening provides, from the epitaxial layer, a source epitaxial region on one side of the opening and a drain epitaxial region on an opposite side of the opening. The source epitaxial region and a first portion of the semiconductor layer underlying the source epitaxial region are annealed into a single crystal transistor source region. Additionally, the drain epitaxial region and a second portion of the semiconductor layer underlying the drain epitaxial region are annealed into a single crystal transistor drain region. A third portion of the semiconductor layer between the transistor source and drain regions forms a transistor channel region. A transistor gate electrode is then formed in the opening above the transistor channel region.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: January 12, 2021
    Assignee: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20200408805
    Abstract: A microelectromechanical system (MEMS) accelerometer sensor has a mobile mass and a sensing capacitor. To self-test the sensor, a test signal is applied to the sensing capacitor during a reset phase of a sensing circuit coupled to the sensing capacitor. The test signal is configured to cause an electrostatic force which produces a physical displacement of the mobile mass corresponding to a desired acceleration value. Then, during a read phase of the sensing circuit, a variation in capacitance of sensing capacitor due to the physical displacement of the mobile mass is sensed. This sensed variation in capacitance is converted to a sensed acceleration value. A comparison of the sensed acceleration value to the desired acceleration value provides an indication of an error in operation of the MEMS accelerometer sensor if the sensed acceleration value and desired acceleration value are not substantially equal.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicants: STMicroelectronics, Inc., STMicroelectronics S.r.l.
    Inventors: Yamu HU, David MCCLURE, Alessandro TOCCHIO, Naren K. SAHOO, Anthony Junior CASILLAN
  • Publication number: 20200408523
    Abstract: A drive signal is applied to a MEMS gyroscope having several intrinsic resonant modes. Frequency and amplitude of mechanical oscillation in response to the drive signal is sensed. At startup, the drive signal frequency is set to a kicking frequency offset from a resonant frequency corresponding to a desired one of the intrinsic resonant modes. In response to sufficient sensed amplitude of mechanical oscillation at the kicking frequency, a frequency tracking process is engaged to control the frequency for the drive signal to sustain mechanical oscillation at the frequency of the desired one of the plurality of intrinsic resonant modes as the oscillation amplitude increases. When the increasing amplitude of the mechanical oscillation exceeds a threshold, a gain control process is used to exercise gain control over the applied drive signal so as to cause the amplitude of mechanical oscillation to match a further threshold. At that point start-up terminates.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: STMicroelectronics, Inc.
    Inventors: Deyou FANG, Chao-Ming TSAI, Yamu HU
  • Publication number: 20200408524
    Abstract: A microelectromechanical system (MEMS) gyroscope sensor has a sensing mass and a quadrature error compensation control loop for applying a force to the sensing mass to cancel quadrature error. To detect fault, the quadrature error compensation control loop is opened and an additional force is applied to produce a physical displacement of the sensing mass. A quadrature error resulting from the physical displacement of the sensing mass in response to the applied additional force is sensed. The sensed quadrature error is compared to an expected value corresponding to the applied additional force and a fault alert is generated if the comparison is not satisfied.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: STMicroelectronics, Inc.
    Inventors: Yamu HU, Deyou FANG, David MCCLURE, Huantong ZHANG, Naren K. SAHOO
  • Publication number: 20200408525
    Abstract: A microelectromechanical system (MEMS) gyroscope includes a driving mass and a driving circuit that operates to drive the driving mass in a mechanical oscillation at a resonant drive frequency. An oscillator generates a system clock that is independent of and asynchronous to the resonant drive frequency. A clock generator circuit outputs a first clock and a second clock that are derived from the system clock. The drive loop of the driving circuit including an analog-to-digital converter (ADC) circuit that is clocked by the first clock and a digital signal processing (DSP) circuit that is clocked by the second clock.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: STMicroelectronics, Inc.
    Inventors: Deyou FANG, Chao-Ming TSAI, Milad ALWARDI, Yamu HU, David MCCLURE
  • Patent number: 10878117
    Abstract: An electronic device includes a time-of-flight sensor configured to sense a distance between the electronic device and at least one object proximate the electronic device. Processing circuitry is coupled to the time-of-flight sensor and controls access to the electronic device based on the sensed distance. The electronic device may include a digital camera that the processing circuitry controls to perform facial or iris recognition utilizing the sensed distance from the time-of-flight sensor.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: December 29, 2020
    Assignees: STMicroelectronics, Inc., STMicroelectronics (Research & Development) Limited
    Inventors: Xiaoyong Yang, Rui Xiao, Duncan Hall
  • Patent number: 10878207
    Abstract: A method includes providing a power supply package (PSP) that includes a power supply, an RFID tag, and a power switch, where a control terminal of the power switch is coupled to an output terminal of the RFID tag, and load path terminals of the power switch are coupled between an output terminal of the PSP and a first terminal of the power supply, where a control register of the RFID tag is pre-programmed with a first value such that the RFID tag is configured to generate a first control signal that turns off the power switch; receiving, by the RFID tag, a second value for the control register of the RFID tag; and writing, by the RFID tag, the second value to the control register of the RFID tag such that the RFID tag is configured to generate a second control signal that turns on the power switch.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 29, 2020
    Assignee: STMicroelectronics, Inc.
    Inventor: John N. Tran
  • Patent number: 10861984
    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 ?m2.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: December 8, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, John H. Zhang
  • Patent number: 10823826
    Abstract: A time of flight range detection device includes a laser configured to transmit an optical pulse into an image scene, a return single-photon avalanche diode (SPAD) array, a reference SPAD array, a range detection circuit coupled to the return SPAD array and the reference SPAD array, and a laser driver circuit. The range detection circuit in operation determines a distance to an object based on signals from the return SPAD array and the reference SPAD array. The laser driver circuit in operation varies an output power level of the laser in response to the determined distance to the object.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 3, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: Xiaoyong Yang, Rui Xiao, Arnaud Deleule
  • Patent number: 10824175
    Abstract: Devices, systems, and methods are provided for monitoring air flow through a server using differential pressure measurements. The device includes an external pressure sensor, an internal pressure sensor, and a controller that receives the pressures from the external and internal pressure sensors. The external pressure sensor detects air pressure of the ambient air around a server enclosure, the internal pressure sensor detects air pressure through a server enclosure, and the controller calculates a pressure differential between the pressure from the external pressure sensor and the internal pressure sensor. The controller can then generate a signal based on the pressure differential, the signal optionally controlling a cooling fan, generating an interrupt for the server circuitry, or performing some other action.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 3, 2020
    Assignee: STMicroelectronics, Inc.
    Inventor: Dominique Paul Barbier
  • Patent number: 10812079
    Abstract: An integrated circuit system-on-chip (SOC) includes a semiconductor substrate, a plurality of components made up of transistors formed in the substrate, and a plurality of interconnection lines providing electrical connectivity among the components. Use of a channel-less design eliminates interconnection channels on the top surface of the chip. Instead, interconnection lines are abutted to one another in a top layer of metallization, thus preserving 5-10% of chip real estate. Clock buffers that are typically positioned along interconnection channels between components are instead located within regions of the substrate that contain the components. Design rules for channel-less integrated circuits permit feed-through interconnections and exclude multi-fanout interconnections.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 20, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: Chetan Bisht, Harry Scrivener, III
  • Patent number: 10748075
    Abstract: Disclosed herein is a method of operating an electronic device. The method includes activating a first sensing device, and determining a first probabilistic context of the electronic device relative to its surroundings. The method includes outputting the first probabilistic context, and determining a confidence measure of the first probabilistic context. Where the confidence measure of the first probabilistic context is below a threshold, the method includes activating a second sensing device, determining a second probabilistic context of the electronic device relative to its surroundings. outputting the second probabilistic context, and determining a confidence measure of the second probabilistic context. Where the confidence measure of the second probabilistic context is above the threshold, the second sensing device is deactivated and the method returns to determining the first probabilistic context.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: August 18, 2020
    Assignees: STMicroelectronics, Inc., STMicroelectronics International N.V.
    Inventors: Mahesh Chowdhary, Arun Kumar, Ghanapriya Singh, Kashif R. J. Meer, Indra Narayan Kar, Rajendar Bahl
  • Patent number: 10749575
    Abstract: A method and near field communications (NFC) system for sensing at least one of an environmental condition or a composition of media in a proximity of the NFC system are provided. In the method and system, a first antenna irradiates an electromagnetic field during a sensor mode. A second antenna detects the electromagnetic field and outputs a voltage representative of the detected electromagnetic field. An NFC controller receives a signal representative of the voltage. The NFC controller determines at least one of the environmental condition or the composition of media based on an association stored in memory between the voltage and the at least one of the environmental condition or the composition of media.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 18, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: Christophe Henri Ricard, Mohammad Mazooji
  • Patent number: 10747933
    Abstract: An integrated circuit system-on-chip (SOC) includes a semiconductor substrate, a plurality of components made up of transistors formed in the substrate, and a plurality of interconnection lines providing electrical connectivity among the components. Use of a channel-less design eliminates interconnection channels on the top surface of the chip. Instead, interconnection lines are abutted to one another in a top layer of metallization, thus preserving 5-10% of chip real estate. Clock buffers that are typically positioned along interconnection channels between components are instead located within regions of the substrate that contain the components. Design rules for channel-less integrated circuits permit feed-through interconnections and exclude multi-fanout interconnections.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: August 18, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: Chetan Bisht, Harry Scrivener, III
  • Patent number: 10731984
    Abstract: A sensor chip includes registers storing and outputting configuration data, an extraction circuit receiving digital data and extracting features of the digital data in accordance with the configuration data, and a classification circuit applying a decision tree to the extracted features to generate a context of an electronic device into which the sensor chip is incorporated relative to its surroundings, the decision tree operating according to the configuration data. The classification unit outputs the context to the registers for storage. The configuration data includes which features for the extraction circuit to extract from the digital data, and a structure for the decision tree. The structure for the decision tree includes conditions that the decision tree is to apply to the at least one extracted feature, and outcomes to be effectuated based upon whether the extracted features meet or do not meet the conditions.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 4, 2020
    Assignee: STMicroelectronics, Inc.
    Inventor: Mahesh Chowdhary