Patents Assigned to STMicroelectronics, Inc.
  • Patent number: 8925835
    Abstract: A method that includes forming a chamber in a substrate, forming a silicon layer overlying the chamber, etching the silicon layer to remove selected regions and retain a selected portion overlying the chamber, the selected portion being at a location and having dimensions that correspond to a location and to dimensions of a nozzle, and forming a first metal layer adjacent to the selected portion. The method also includes forming a path in the substrate to expose the chamber concurrently with removing the selected portion of the silicon layer to expose the nozzle, the nozzle being in fluid communication with the path, the chamber, and a surrounding environment.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: January 6, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: Ming Fang, Fuchao Wang
  • Patent number: 8921976
    Abstract: Passive circuit elements are formed at surfaces of two integrated circuit wafers. The passive circuit elements are utilized to align the two integrated circuit wafers to form an integrated circuit wafer stack.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 30, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Yiheng Xu
  • Patent number: 8913336
    Abstract: An interleave address generation circuit includes a plurality of linear feedback shift registers operable to generate addresses for permuting a data block in a first domain to a data block in a second domain on a subword basis. The interleave address generation circuit is operable to generate the lane addresses for each subword and the linear feedback registers configured to generate circulant addresses and sub-circulant address to map bits in each subword in the data block in the first domain to a corresponding subword in the second domain.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: December 16, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Sivagnanam Parthasarathy, Shayan Srinivasa Garani, Sudha Thipparthi
  • Patent number: 8913607
    Abstract: The addition of high throughput capability elements to beacon frames and peer link action frames in wireless mesh networks enable the utilization of desirable features without further modifications to the network. Rules can be established for high throughput mesh point protection in a mesh network, Space-time Block Code (STBC) operations and 20/40 MHz operation selections. However, features such as PSMP (power save multi-poll) and PCO (phased coexistence operations) are barred from implementation to prevent collisions.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: December 16, 2014
    Assignees: STMicroelectronics, Inc., STMicroelectronics S.r.l.
    Inventors: Liwen Chu, George Vlantis, Vincenzo Scarpa
  • Patent number: 8913629
    Abstract: Within a domain of a master device, devices that share a power line as a communications medium monitor signal detection windows to sense network status. The devices transmit sensed network status to the master device. The master device allocates channel resources based on the network statuses communicated by the devices within the domain.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 16, 2014
    Assignees: Qualcomm Atheros, Inc., HisiliconTechnologies Ltd., Panasonic Corporation, Spidcom Technologies, STMicroelectronics, Inc., Gigle Networks Iberia, S.L.
    Inventors: Lawrence W. Yonge, III, Srinivas Katar, William E. Earnshaw, Stefano Galli, Akio Kurobe, Hisao Koga, Nobutaka Kodama, Jose Abad Molina, Oleg Logvinov, Paul Dixon, Olivier Isson
  • Patent number: 8908862
    Abstract: Embodiments are directed to switching of stations STA, access points APs and PCPs that are communicating through a wireless link from one frequency band to another. One embodiment is directed to switching of stations STA that are communicating through a tunneled direct link setup (TDLS) link from one frequency band to another. A multiband element may be added to a TDLS discovery request and TDLS discovery response frames to allow each of the stations communications through a TDLS to determine if the other station has multiband capability. In one embodiment, a pairwise transient key (PTK) is created for both a current band in which the stations STA are communicating and a new band over which the stations may communicate in the future. In this way there is no need to calculate a new pairwise transient key PTK for the new frequency band.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Liwen Chu, George A. Vlantis
  • Patent number: 8907427
    Abstract: A semiconductor device may include a substrate, source and drain regions in the substrate, a recessed epitaxial channel layer in the substrate between the source and drain regions, and a high-K gate dielectric layer overlying the recessed epitaxial channel layer. The semiconductor device may further include a gate electrode overlying the high-K gate dielectric layer, a dielectric cap layer in contact with top and sidewall portions of the gate electrode, the dielectric cap layer having a lower dielectric constant than the high-K gate dielectric layer, and source and drain contacts coupled to the source and drain regions.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics, Inc.
    Inventor: John H Zhang
  • Publication number: 20140356991
    Abstract: A method of making an inkjet print head may include forming, by sawing with a rotary saw blade, first discontinuous slotted recesses in a first surface of a wafer. The first discontinuous slotted recesses may be arranged in parallel, spaced apart relation. The method may further include forming, by sawing with the rotary saw blade, second discontinuous slotted recesses in a second surface of the wafer aligned and coupled in communication with the first continuous slotted recesses to define through-wafer channels. In another embodiment, the first and second plurality of discontinuous recesses may be formed by respective first and second rotary saw blades.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicant: STMICROELECTRONICS, INC.
    Inventor: Kenneth J. Stewart
  • Publication number: 20140353753
    Abstract: Improved fin field effect transistor (FinFET) devices and methods for fabrication thereof. In one aspect, a method for fabricating a FinFET device comprises: a silicon substrate on which a silicon epitaxial layer is grown is provided. Sacrificial structures on the substrate are formed from the epitaxial layer. A blanket silicon layer is formed over the sacrificial structures and exposed substrate portions, the blanket silicon layer having upper and lower portions of uniform thickness and intermediate portions interposed between the upper and lower portions of non-uniform thickness and having an angle of formation. An array of semiconducting fins is formed from the blanket silicon layer and a non-conformal layer formed over the blanket layer. The sacrificial structures are removed and the resulting void filled with isolation structures under the channel regions. Source and drain are formed in the source/drain regions during a fin merge of the FinFET.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Shom Ponoth, Prasanna Khare, Qing Liu, Balasubramanian Pranatharthiharan
  • Publication number: 20140354736
    Abstract: A method of making an inkjet print head may include forming, by sawing with a rotary saw blade, continuous slotted recesses in a first surface of a wafer. The continuous slotted recesses may be arranged in parallel, spaced apart relation, and each continuous slotted recess may extend continuously across the first surface. The method may further include forming discontinuous slotted recesses in a second surface of the wafer to be aligned and coupled in communication with the continuous slotted recesses to define alternating through-wafer channels and slotted recess portions. The method may further include selectively filling the residual slotted recess portions to define through-wafer ink channels.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicant: STMICROELECTRONICS, INC.
    Inventor: Kenneth J. Stewart
  • Publication number: 20140357036
    Abstract: A method of making a semiconductor device includes forming an intermediate structure including second semiconductor fin portions above a first semiconductor layer, and top first semiconductor fin portions extending from respective ones of the second semiconductor fin portions. The second semiconductor fin portions are selectively etchable with respect to the top first semiconductor fin portions. A dummy gate is on the intermediate structure. The second semiconductor fin portions are selectively etched to define bottom openings under respective ones of the top first semiconductor fin portions. The bottom openings are filled with a dielectric material.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Nicolas Loubet, Prasanna Khare, Huiming Bu
  • Publication number: 20140353718
    Abstract: An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Qing Liu, Prasanna Khare, Stephane Allegret-Maret, Bruce Doris, Kangguo Cheng
  • Publication number: 20140356990
    Abstract: A method of making inkjet print heads may include forming a first wafer including a sacrificial substrate layer, and a first dielectric layer thereon having first openings therein defining inkjet orifices. The method may also include forming a second wafer having inkjet chambers defined thereon, and joining the first and second wafers together so that each inkjet orifice is aligned with a respective inkjet chamber. The method may further include removing the sacrificial substrate layer thereby defining the inkjet print heads.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicant: STMICROELECTRONICS, INC.
    Inventors: Paul MIKULAN, Kenneth J. STEWART, Virginia L. HWANG
  • Publication number: 20140357040
    Abstract: A method of making a semiconductor device includes forming a first spacer for at least one gate stack on a first semiconductor material layer, and forming a respective second spacer for each of source and drain regions adjacent the at least one gate. Each second spacer has a pair of opposing sidewalls and an end wall coupled thereto. The method includes filling the source and drain regions with a second semiconductor material while the first and second spacers provide confinement.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Applicant: STMICROELECTRONICS, INC.
    Inventors: Nicolas LOUBET, Pierre Morin
  • Publication number: 20140353717
    Abstract: An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Qing Liu, Prasanna Khare, Stephane Allegret-Maret, Bruce Doris, Kangguo Cheng
  • Publication number: 20140357060
    Abstract: A SOI substrate layer formed of a silicon semiconductor material includes adjacent first and second regions. A portion of the silicon substrate layer in the second region is removed such that the second region retains a bottom portion made of the silicon semiconductor material. An epitaxial growth of a silicon-germanium semiconductor material is made to cover the bottom portion. Germanium is then driven from the epitaxially grown silicon-germanium material into the bottom portion to convert the bottom portion to silicon-germanium. Further silicon-germanium growth is performed to define a silicon-germanium region in the second region adjacent the silicon region in the first region. The silicon region is patterned to define a first fin structure of a FinFET of a first (for example, n-channel) conductivity type. The silicon-germanium region is also patterned to define a second fin structure of a FinFET of a second (for example, p-channel) conductivity type.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 4, 2014
    Applicant: STMicroelectronics, Inc.
    Inventors: Qing Liu, Nicolas Loubet
  • Patent number: 8900978
    Abstract: A method for making a semiconductor device includes forming at least one gate stack on a layer comprising a first semiconductor material and etching source and drain recesses adjacent the at least one gate stack. The method further includes shaping the source and drain recesses to have a vertical side extending upwardly from a bottom to an inclined extension adjacent the at least one gate stack.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: December 2, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicolas Loubet, Douglas LaTulipe, Alexander Reznicek
  • Patent number: 8900973
    Abstract: A method of making a semiconductor device patterns a first fin in a pFET region, and patterns a second fin in an nFET region. A plurality of conformal microlayers containing a straining material are deposited on the first and second fins. A protective cap material is formed on the first fin, and the conformal layers are selectively removed from the second fin. The straining material is then thermally diffused into the first fin. The protective cap material is removed from the first fin after the thermal annealing and after the conformal micro layers are selectively removed from the second fin.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 2, 2014
    Assignees: International Business Machines Corporation, Globalfoundries Inc., Renesas Electronics America Inc., STMicroelectronics, Inc.
    Inventors: Nathaniel C. Berliner, Pranita Kulkarni, Nicolas Loubet, Kingsuk Maitra, Sanjay C. Mehta, Paul A. Ronsheim, Toyoji Yamamoto, Zhengmao Zhu
  • Patent number: RE45278
    Abstract: A Central Processing Unit (CPU) hotpatch circuit compares the run-time instruction stream against an internal cache. The internal cache stores embedded memory addresses with associated control flags, executable instruction codes, and tag information. In the event that a comparison against the current program counter succeeds, then execution is altered as required per the control flags. If no comparison match is made, then execution of the instruction that was accessed by the program counter is executed.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: December 2, 2014
    Assignee: STMicroelectronics, Inc.
    Inventor: Christian D. Kasper
  • Patent number: RE45286
    Abstract: An embedded MEMS semiconductor substrate is set forth and can be a starting material for subsequent semiconductor device processing. A MEMS device is formed in a semiconductor substrate, including at least one MEMS electrode and a buried silicon dioxide sacrificial layer has been applied for releasing the MEMS. A planarizing layer is applied over the substrate, MEMS device and MEMS electrode. A polysilicon protection layer is applied over the planarizing layer. A silicon nitride capping layer is applied over the polysilicon protection layer. A polsilicon seed layer is applied over the polysilicon nitride capping layer. The MEMS device is released by removing at least a portion of the buried silicon dioxide sacrificial layer and an epitaxial layer is grown over the polysilicon seed layer to be used for subsequent semiconductor wafer processing.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Olivier Le Neel, Peyman Sana, Loi Nguyen, Venkatesh Mohanakrishnaswamy