Patents Assigned to STMicroelectronics (Research& Development)
  • Publication number: 20240045511
    Abstract: The present disclosure is directed to a three-dimensional interactive display system. The system detects a position of a user (e.g., the user's finger or hand) or an optical emitter device, along three different dimensions. In a case where the system detects a position of a user's finger, the user wears a passive device having angled surfaces on his or her finger to improve detection of the user's finger. In a case where the system detects the optical emitter device, the user holds the optical emitter device or wears the optical emitter device similar to the passive device. The optical emitter device emits light, and the system tracks the optical emitting device by detecting the light emitted by the optical emitter device.
    Type: Application
    Filed: July 31, 2023
    Publication date: February 8, 2024
    Applicant: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventor: Jeff M. RAYNOR
  • Patent number: 11892568
    Abstract: A depth map sensor includes a first array of first pixels, each first pixel having a first photodetector associated with a pixel circuit that comprises a plurality of first bins for accumulating events. A clock source is configured to generate a plurality of phase-shifted clock signals. A first circuit has a plurality of first output lines coupled to the first array of first pixels. The first circuit is configured to receive the plurality of phase-shifted clock signals. The first circuit includes a first block and a second block. The first block is configured to propagate the plurality of phase-shifted clock signals to the second block during a first period determined by a first enable signal and the second block configured to select to which of the plurality of first output lines each of the plurality of phase-shifted clock signals is applied.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: February 6, 2024
    Assignees: STMICROELECTRONICS (GRENOBLE 2) SAS, STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: Ivelina Hristova, Pascal Mellot, Neale Dutton
  • Patent number: 11885878
    Abstract: In an embodiments, a method for operating a time-of-flight (ToF) ranging array includes: illuminating a field-of-view (FoV) of the ToF ranging array with radiation pulses; receiving reflected radiation pulses with a plurality of single photon avalanche diodes (SPADs) in a region of interest (ROI) of the ToF ranging array, the plurality of SPADs arranged in a plurality of SPAD clusters; determining an ambient count of ambient light events generated by SPADs of a first SPAD cluster of the plurality of SPAD clusters; and gating an output of the first SPAD cluster based on the ambient count.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: January 30, 2024
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventor: Stuart McLeod
  • Patent number: 11885915
    Abstract: In an embodiment, a method includes: receiving a first plurality of digital codes from a time-to-digital converter (TDC); TDC; generating a coarse histogram from the first plurality of digital codes; detecting a peak coarse bin from the plurality of coarse bins; after receiving the first plurality of digital codes, receiving a second plurality of digital codes from the TDC; and generating a fine histogram from the second plurality of digital codes based on the detected peak coarse bin, where a fine histogram depth range is narrower than a coarse histogram depth range, where a lowest fine histogram depth is lower or equal to a lowest coarse peak depth, and where a highest fine histogram depth is higher or equal to a highest coarse peak depth.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: January 30, 2024
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventors: Neale Dutton, John Kevin Moore
  • Publication number: 20240011828
    Abstract: An optical sensor includes pixels. Each pixel has a photodetector. A readout circuit performs a process over an exposure time where the photodetector is connected to a reverse bias voltage supply to reset a voltage across the photodetector, and the photodetector is disconnected from the reverse bias voltage supply until that the voltage across the photodetector decreases in response to received ambient light. An ambient light level is then determine an based on a number of times the voltage across the photodetector is reset over the exposure time.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Applicants: STMicroelectronics (Research & Development) Limited, STMicroelectronics (Grenoble 2) SAS
    Inventors: Jeffrey M. RAYNOR, Sophie TAUPIN, Jean-Jacques ROUGER, Pascal MELLOT
  • Publication number: 20240014341
    Abstract: A device includes a single photon avalanche diode in a portion of a substrate, wherein the portion has an octagonal profile. The octagonal profile is delimited by a wall forming an octagonal contour around the portion. The device further includes an array of diodes, wherein each diode is located in a corner between four adjacent single photon avalanche diodes. Each single photon avalanche diode further includes a doped anode region. A shallow trench isolation is formed in each doped anode region. A polysilicon line forming a resistor is supported at the upper surface of the shallow trench isolation.
    Type: Application
    Filed: July 10, 2023
    Publication date: January 11, 2024
    Applicants: STMicroelectronics (Research & Development) Limited, STMicroelectronics (Crolles 2) SAS
    Inventors: Isobel NICHOLSON, Sara PELLEGRINI, Dominique GOLANSKI, Alexandre LOPEZ
  • Publication number: 20240014342
    Abstract: A device includes a single photon avalanche diode in a substrate and a resistor. The resistor is provided resting on an insulating trench located in a doped anode region of the single photon avalanche diode.
    Type: Application
    Filed: July 10, 2023
    Publication date: January 11, 2024
    Applicants: STMicroelectronics (Research & Development) Limited, STMicroelectronics (Crolles 2) SAS
    Inventors: Sara PELLEGRINI, Dominique GOLANSKI, Alexandre LOPEZ
  • Publication number: 20230411928
    Abstract: An optical element is positioned in a holder over a laser light source. The optical element includes an electrical trace that is coupled between first and second pads. A sensing circuit that is also coupled to the first and second pads performs a voltage/current sensing operation to detect displacement of the optical element and control enablement of the laser light source.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 21, 2023
    Applicant: STMicroelectronics (Research & Development) Limited
    Inventors: Steven COLLINS, Graeme STORM, Supriya Raveendra HEGDE
  • Patent number: 11843008
    Abstract: An electronic device includes a stack of a first level having a SPAD, a second level having a quench circuit for said SPAD, and a third level having a circuit for processing data generated by said SPAD. A method for making the device includes: a) forming of the first level; b) bonding, on the first level, by molecular bonding, of a stack of layers including a semiconductor layer; and c) forming the quench circuit of the second level in the semiconductor layer.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: December 12, 2023
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics (Research & Development) Limited
    Inventors: Francois Guyader, Sara Pellegrini, Bruce Rae
  • Patent number: 11830459
    Abstract: An embodiment method of measuring ambient light comprises generating, by an ambient light sensor associated with a screen which alternates between first phases in which light is emitted and second phases in which no light is emitted by the screen, a first signal representative of an intensity of light received by the ambient light sensor during the first and second phases; comparing the first signal with a threshold intensity value; and controlling a timing of an ambient light measurement by the light sensor based on the comparison.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: November 28, 2023
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventor: Jeffrey M. Raynor
  • Publication number: 20230375680
    Abstract: This disclosure relates to a time-of-flight sensor including, on a same base substrate, a light emitter configured to emit light into an image scene, a reference sensor configured to detect light emitted by the light emitter, and a signal reception sensor array separated from the light emitter by an optical barrier. The optical barrier is configured to prevent light emitted by the light emitter from directly reaching the signal reception sensor array, with the signal reception sensor array being configured to detect light reflected by the image scene. The reference sensor and the signal reception sensor array are based on semiconductor nanoparticles.
    Type: Application
    Filed: May 10, 2023
    Publication date: November 23, 2023
    Applicants: STMicroelectronics (Research & Development) Limited, STMicroelectronics (Grenoble 2) SAS
    Inventors: Neale DUTTON, Jonathan STECKEL
  • Publication number: 20230375679
    Abstract: A time-of-flight system includes an emitter-circuit generating and directing pulses of light toward a target, and a receiver-circuit including a photodetector coupled between a bias node and a sensing node to detect pulses that have reflected off the target, a comparison circuit comparing a sense voltage at the sensing node to a reference, a timing measurement circuit measuring elapsed time between generation of a given pulse and detection thereof after reflection off the target, and a programmable current sink that sinks a current from the sensing node equal to a portion of a photocurrent generated by the photodetector due to detection of ambient light. A timing-generation circuit synchronizes generation of the pulses and measurement of elapsed time by the timing circuit. A processor adjusts a magnitude of the current sunk from the sensing node based upon output of the comparison circuit when the emitter circuit is deactivated.
    Type: Application
    Filed: May 17, 2022
    Publication date: November 23, 2023
    Applicant: STMicroelectronics (Research & Development) Limited
    Inventor: Neale DUTTON
  • Patent number: 11822017
    Abstract: A ToF sensor includes an array of pixels having first and second subsets of pixels, first and second pluralities of TDCs, a routing bus having first and second pluralities of bus drivers, and a controller configured to: when the first subset of pixels is active and the second subset of pixels is not active, control the first plurality of bus drivers to route events from half of the pixels of the first subset to the first plurality of TDCs and control the first and second pluralities of bus drivers to route events from the other half of the pixels of the first subset to the second plurality of TDCs, and when the first subset of pixels is not active and the second subset of pixels is active, control the first plurality of bus drivers to route events from the second subset of pixels to the first plurality of TDCs.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: November 21, 2023
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventors: Neale Dutton, John Kevin Moore
  • Patent number: 11822014
    Abstract: A method can be used for controlling pixel scanning within a range detector. A spatially controllable point light source generates a first series of light source pulses associated with a first spatial direction. The first series of light source pulses are generated during a first time period. The spatially controllable point light source generates a second series of light source pulses associated with a second spatial direction. The second series of light source pulses are generated during a second time period that overlaps with the first time period so that the second series of light source pulses are started during the first series of light source pulses.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: November 21, 2023
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventors: Neale Dutton, Sarrah Moiz Patanwala
  • Publication number: 20230369359
    Abstract: An electronic device includes a stack of a first level having a SPAD, a second level having a quench circuit for said SPAD, and a third level having a circuit for processing data generated by said SPAD. A method for making the device includes: a) forming of the first level; b) bonding, on the first level, by molecular bonding, of a stack of layers including a semiconductor layer; and c) forming the quench circuit of the second level in the semiconductor layer.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Applicants: STMicroelectronics (Crolles 2) SAS, STMicroelectronics (Research & Development) Limited
    Inventors: Francois GUYADER, Sara PELLEGRINI, Bruce RAE
  • Publication number: 20230367047
    Abstract: Various embodiments provide an optical lens that includes wafer level diffractive microstructures. In one embodiment, the optical lens includes a substrate, a microstructure layer having a first refractive index, and a protective layer having a second refractive index that is different from the first refractive index. The microstructure layer is formed on the substrate and includes a plurality of diffractive microstructures. The protective layer is formed on the diffractive microstructures. The protective layer provides a cleanable surface and encapsulates the diffractive microstructures to prevent damage and contamination to the diffractive microstructures. In another embodiment, the optical lens includes a substrate and an anti-reflective layer. The anti-reflective layer is formed on the substrate and includes a plurality of diffractive microstructures.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 16, 2023
    Applicant: STMicroelectronics (Research & Development) Limited
    Inventors: Kevin CHANNON, James Peter Drummond DOWNING, Andy PRICE
  • Patent number: 11815628
    Abstract: An apparatus comprises an array of vertical-cavity surface-emitting lasers. Each of the vertical-cavity surface-emitting lasers is configured to be a source of light. The apparatus also comprises an optical arrangement configured to receive light from a plurality of the vertical-cavity surface-emitting lasers and to output a plurality of light beams.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: November 14, 2023
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: Christopher Townsend, Thineshwaran Gopal Krishnan, James Peter Drummond Downing, Kevin Channon
  • Patent number: 11815393
    Abstract: A sensor has plurality of pixels arranged in a plurality of rows and columns with row control circuitry for controlling which one of said rows is activated and column control circuitry for controlling which of said pixels in said activated row is to be activated. The column circuitry has memory configured to store information indication as to which of the pixels are defective, wherein each of the pixels has a photodiode and a plurality of transistors which control the activation of the photodiode. A first transistor is configured to be controlled by a column enable signal while a second transistor is configured to be controlled by a row select signal.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: November 14, 2023
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventor: Neale Dutton
  • Patent number: 11808895
    Abstract: A method includes measuring a first set of photon-event data collected from a first crosstalk-monitoring zone of an optical receiver during a first period of time of flight ranging, measuring a second set of photon-event data collected from a second crosstalk-monitoring zone of the optical receiver during the first period of time of flight ranging, and generating a first dynamic crosstalk compensation value for a first histogram region of the optical receiver using the first set of photon-event data, the second set of photon-event data, and a native crosstalk compensation value for the first histogram region of the optical receiver.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 7, 2023
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: Stuart McLeod, Ed Hawkins
  • Patent number: 11803942
    Abstract: A method for enhancing an image and an image enhancement device are described. The method for enhancing an image including: capturing an initial image including a plurality of pixels, and performing a pixel-by-pixel dehazing operation for each of the plurality of pixels. The performing including: generating, for each of the plurality of pixels, a value for a blended gray image based on color channels of the pixel, generating, for each of the plurality of pixels, a value for a transmission map based on the blended gray image, and generating, for each of the plurality of pixels, output color channels for a processed image based on the value for the transmission map, the processed image being an enhancement of the initial image.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: October 31, 2023
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: Brian Douglas Stewart, Réka Hegedüs