Abstract: A method and system for rotating a vector, including at least one lookup table (LUT) including data corresponding to the vector being rotated around a first angle and a second angle, processing circuitry configured for accessing the at least one LUT for incrementally rotating the vector around the first and second angles, where accessing includes identifying an LUT input entry and selecting a corresponding LUT output entry, the corresponding output entry including an incremental angular rotation (IAR) of the vector around the first angle or the second angle, and a comparator configured to generate a comparator signal based upon comparing a counter incremented by the IAR with the first angle or the second angle, the processing circuitry further configured to iteratively access the at least one LUT, based on the comparator signal, for completing the incremental rotation of the vector around the first angle and the second angle.
Abstract: A MEMS device with teeter-totter structure includes a mobile mass having an area in a plane and a thickness in a direction perpendicular to the plane. The mobile mass is tiltable about a rotation axis extending parallel to the plane and formed by a first and by a second half-masses arranged on opposite sides of the rotation axis. The first and the second masses have a first and a second centroid, respectively, arranged at a first and a second distance b1, b2, respectively, from the rotation axis. First through openings are formed in the first half-mass and, together with the first half-mass, have a first total perimeter p1 in the plane. Second through openings are formed in the second half-mass and, together with the second half-mass, have a second total perimeter p2 in the plane, where the first and the second perimeters p1, p2 satisfy the equation: p1×b1=p2×b2.
Abstract: A system basis chip is described. The system basis chip comprises a power supply circuit configured to receive an input voltage and generate a plurality of voltages, and a control circuit. Specifically, the power supply circuit is configured to selectively switch on a first and a second voltage of the voltages as a function of a control signal. The control circuit measures a resistance value of an external resistor connected to a terminal and selects one of a plurality of configurations as a function of the measured resistance value, wherein a first configuration indicates that said first voltage should be switched on before said second voltage and a second configuration indicates that said second voltage should be switched on before said first voltage. Accordingly, the control circuit may generate the control signal in order to switch on in sequence the first and the second voltage according to the selected configuration.
Type:
Application
Filed:
September 6, 2022
Publication date:
March 9, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Luigi SOLE, Rossella GAUDIANO, Marta CANTARINI, Nicola ERRICO, Antonio GIORDANO
Abstract: System for detecting a touch gesture of a user on a detection surface, comprising: a processing unit; and an accelerometer to detect a vibration at the detection surface and generate a vibration signal. The processing unit is configured to: acquire the vibration signal, detect, in the vibration signal, a signal characteristic which can be correlated to the touch gesture of the user, detect, in the vibration signal, a stationarity condition preceding and/or following the detected signal characteristic, and validate the touch gesture in the event that both the signal characteristic and the stationarity condition have been detected. An electrostatic charge sensor may also be used as a further parameter to validate the touch gesture.
Abstract: The present disclosure is directed to a device with enhanced human activity recognition. The device detects a human activity using one more motion sensors, and enhances the detected human activity depending on whether the device is in an indoor environment or an outdoor environment. The device utilizes one or more electrostatic charge sensors to determine whether the device is in an indoor environment or an outdoor environment. The device may also exclude gyroscope data when performing human activity recognition, and instead utilize electrostatic charge variation data in conjunction with acceleration data to perform human activity recognition.
Type:
Application
Filed:
April 13, 2022
Publication date:
March 9, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Stefano Paolo RIVOLTA, Roberto MURA, Michele FERRAINA
Abstract: A MEMS actuator includes a semiconductor body with a first surface defining a housing cavity facing the first surface and having a bottom surface, the semiconductor body further defining a fluidic channel in the semiconductor body with a first end across the bottom surface. A strainable structure extends into the housing cavity, is coupled to the semiconductor body at the bottom surface, and defines an internal space facing the first end of the fluidic channel and includes at least a first and a second internal subspace connected to each other and to the fluidic channel. When a fluid is pumped through the fluidic channel into the internal space, the first and second internal subspaces expand, thereby straining the strainable structure along the first axis and generating an actuation force exerted by the strainable structure along the first axis, in an opposite direction with respect to the housing cavity.
Abstract: The present disclosure is directed to a device with enhanced human activity recognition. The device detects a human activity using one more motion sensors, and enhances the detected human activity depending on whether the device is in an indoor environment or an outdoor environment. The device utilizes one or more electrostatic charge sensors to determine whether the device is in an indoor environment or an outdoor environment.
Abstract: The MEMS actuator is formed by a substrate, which surrounds a cavity; by a deformable structure suspended on the cavity; by an actuation structure formed by a first piezoelectric region of a first piezoelectric material, supported by the deformable structure and configured to cause a deformation of the deformable structure; and by a detection structure formed by a second piezoelectric region of a second piezoelectric material, supported by the deformable structure and configured to detect the deformation of the deformable structure.
Type:
Grant
Filed:
December 29, 2020
Date of Patent:
March 7, 2023
Assignee:
STMICROELECTRONICS S.r.l.
Inventors:
Domenico Giusti, Carlo Luigi Prelini, Marco Ferrera, Carla Maria Lazzari, Luca Seghizzi, Nicolo′ Boni, Roberto Carminati, Fabio Quaglia
Abstract: A system for detecting steps of a user includes processing circuitry and a sensor configured to detect a variation of electrostatic charge of the user during a step of the user and generate a charge-variation signal. An accelerometer is configured to detect an acceleration as a consequence of the step and generate an acceleration signal. The processing circuitry is configured to: acquire the charge-variation signal; acquire the acceleration signal; detect, in the charge-variation signal, a first characteristic identifying the step; detect, in the acceleration signal, a second characteristic identifying the step. If both of the first and second characteristics have been detected, the presence of the step can be validated.
Abstract: An electronic device has sensing circuitry and control circuitry. The control circuitry generates, based on generated sensor data, information indicative of movement of the electronic device. The control circuitry generates control signals to control operation of the electronic device in a plurality of power states, including a working-power state, an intermediate-power state and a low-power state, based on the information indicative of movement.
Type:
Grant
Filed:
February 4, 2021
Date of Patent:
March 7, 2023
Assignee:
STMICROELECTRONICS S.r.l.
Inventors:
Stefano Paolo Rivolta, Marco Bianco, Roberto Mura, Federico Rizzardini, Lorenzo Bracco
Abstract: An embodiment apparatus comprises an optically transparent substrate having first and second surfaces; a piezoelectric membrane, arranged at the first surface, that oscillates in response to a light beam propagated through the substrate; at least one reflective facet facing the substrate and arranged at the piezoelectric membrane; and an optical element receiving the light beam at an input end and guiding the light beam towards an output end coupled to the second surface. The optical element incorporates a light focusing path focusing the light beam at a focal point at the piezoelectric membrane, and at least one light collimating path collimating the light beam onto the at least one reflective facet. The optical element guides light reflected from the at least one reflective facet to the input end, the reflected light indicating a position of the optical element with respect to the focal point.
Abstract: Disclosed herein is a single integrated circuit chip including main logic that operates a vehicle component such as a valve driver. Isolated from the main logic within the chip is a safety area that operates to verify proper operation of the main logic. A checker circuit within the chip outside of the safety area serves to verify proper operation of the checker circuit. The checker circuit receives signals from the safety circuit and uses combinatorial logic circuit to verify from those signals that the check circuit is operating properly.
Abstract: A semiconductor device comprises: one or more semiconductor dice arranged on a substrate such as a leadframe, an insulating encapsulation of, e.g., LDS material molded onto the semiconductor die or dice arranged on the substrate, the encapsulation having a surface opposite the substrate, and electrically conductive formations (e.g., die-to-lead 181, 182, 183 or die-to-die 201, 202) provided in the encapsulation and coupled to the semiconductor die or dice arranged on the substrate. A tape is laminated onto the surface of the encapsulation opposite the substrate and electrically conductive contacts to the electrically conductive formations extend through the tape laminated onto the encapsulation. The length of the electrically conductive contacts is thus reduced to the thickness of the tape laminated onto the encapsulation, thus facilitating producing, e.g., “vertical” MOSFET power devices having a reduced drain-source “on” resistance, RDSON.
Abstract: A gyroscopic sensor unit detects a phase drift between a demodulated output signal and demodulation signal during output of a quadrature test signal. A delay calculator detects the phase drift based on changes in the demodulated output signal during application of the quadrature test signal. A delay compensation circuit compensates for the phase drift by delaying the demodulation signal by the phase drift value.
Abstract: The present disclosure is directed to an opto-electronic device of semiconductor material formed in a semiconductor layer of a first conductivity type having a thickness and accommodating at least one deep region of a second conductivity type. The deep region forms a PN junction with the semiconductor layer. The deep region has a depth greater than the width. The deep region is formed by a bottom portion contiguous to a first layer portion of the semiconductor layer; a surface portion contiguous to a second layer portion of the semiconductor layer; and an intermediate portion contiguous to a third layer portion. The concentration of the third layer portion is greater than that of the first and second layer portions.
Abstract: The present disclosure is directed to a method for manufacturing a micro-electro-mechanical device. The method includes the steps of forming, on a substrate, a first protection layer of crystallized aluminum oxide, impermeable to HF; forming, on the first protection layer, a sacrificial layer of silicon oxide removable with HF; forming, on the sacrificial layer, a second protection layer of crystallized aluminum oxide; exposing a sacrificial portion of the sacrificial layer; forming, on the sacrificial portion, a first membrane layer of a porous material, permeable to HF; forming a cavity by removing the sacrificial portion through the first membrane layer; and sealing pores of the first membrane layer by forming a second membrane layer on the first membrane layer.
Type:
Application
Filed:
August 23, 2022
Publication date:
March 2, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Paolo FERRARI, Flavio Francesco VILLA, Roberto CAMPEDELLI, Luca LAMAGNA, Enri DUQI, Mikel AZPEITIA URQUIA, Silvia NICOLI, Maria Carolina TURI
Abstract: The present disclosure is directed to a semiconductor package including a first laser direct structuring (LDS) resin layer and a second LDS resin layer on the first LDS resin layer. Respective surfaces of the first LDS resin layer and the second LDS resin layer are patterned utilizing an LDS process by exposing the respective surfaces to a laser. Patterning the first and second LDS resin layers, respectively, activates additive material present within the first and second LDS resin layers, respectively, converting the additive material from a non-conductive state to a conductive state. The LDS process is followed by a chemical plating step and an electrolytic plating process to form conductive structure coupled to a plurality of die within the first and second LDS resin layers. A molding compound layer is formed on surfaces of the conductive structures and covers the surfaces of the conductive structures.
Abstract: A convolutional neural network includes convolution circuitry. The convolution circuitry performs convolution operations on input tensor values. The convolutional neural network includes requantization circuitry that requantizes convolution values output from the convolution circuitry.
Type:
Application
Filed:
August 30, 2021
Publication date:
March 2, 2023
Applicants:
STMicroelectronics S.r.l., STMicroelectronics International N.V.
Inventors:
Giuseppe DESOLI, Surinder Pal SINGH, Thomas BOESCH
Abstract: Method for manufacturing a micro-electro-mechanical system, MEMS, integrating a first MEMS device and a second MEMS device. The first MEMS device is a capacitive pressure sensor and the second MEMS device is an inertial sensor. The steps of manufacturing the first and second MEMS devices are, at least partly, shared with each other, resulting in a high degree of integration on a single die, and allowing to implement a manufacturing process with high yield and controlled costs.
Type:
Application
Filed:
August 26, 2022
Publication date:
March 2, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Paolo FERRARI, Lorenzo CORSO, Flavio Francesco VILLA, Silvia NICOLI, Luca LAMAGNA
Abstract: In accordance with an embodiment, a method of detecting moving objects via a moving camera includes receiving a sequence of images from the moving camera; determining optical flow data from the sequence of images; decomposing the optical flow data into global motion related motion vectors and local object related motion vectors; calculating global motion parameters from the global motion related motion vectors; calculating moto-compensated vectors from the local object related motion vectors and the calculated global motion parameters; compensating the local object related motion vectors using the calculated global motion parameters; and clustering the compensated local object related motion vectors to generate a list of detected moving objects.
Type:
Grant
Filed:
April 1, 2021
Date of Patent:
February 28, 2023
Assignee:
STMicroelectronics S.r.l.
Inventors:
Giuseppe Spampinato, Salvatore Curti, Arcangelo Ranieri Bruna