Abstract: An embodiment of the present invention discloses a system and method for decoding multiple independent encoded audio streams using a single decoder. The system includes one or more parsers, a preprocessor, an audio decoder, and a renderer. The parser extracts individual audio frames from each input audio stream. The preprocessor combines the outputs of all parsers into a single audio frame stream and enables sharing of the audio decoder among multiple independent encoded audio streams. The audio decoder decodes the single audio frame stream and provides a single decoded audio stream. And the renderer renders the individual reconstructed audio streams from the single decoded audio stream.
Type:
Grant
Filed:
October 22, 2010
Date of Patent:
December 17, 2013
Assignees:
STMicroelectronics International N.V., STMicroelectronics (Grenoble) SAS
Abstract: A proximity detector may include an array of single photon avalanche diodes (SPADs) and an illumination source. Illumination from the illumination source may be reflected by a target to the array of single photon avalanche diodes. The SPADs may be operable to detect events. A number of events detected may be dependent on a level of illumination incident on the SPADs. The proximity detector may then determine a quality metric and calculate an output when the quality metric is at a predetermined level. A related method may include regulating the quality of the data on which such a proximity detector apparatus calculates its output.
Abstract: A method for forming a capacitive structure in a metal level of an interconnection stack including a succession of metal levels and of via levels, including the steps of: forming, in the metal level, at least one conductive track in which a trench is defined; conformally forming an insulating layer on the structure; forming, in the trench, a conductive material; and planarizing the structure.
Type:
Grant
Filed:
March 21, 2011
Date of Patent:
December 17, 2013
Assignees:
STMicroelectronics S.A., International Business Machines Corporation
Abstract: A vibrating nano-scale or micro-scale electromechanical component including a vibrating mechanical element that cooperates with at least one detection electrode. The detection electrode is flexible and is configured to vibrate in phase opposition relative to the vibrating mechanical element. Such a component may find, for example, application to resonators or motion sensors.
Type:
Grant
Filed:
October 8, 2008
Date of Patent:
December 17, 2013
Assignees:
Commissariat a l'energie atomique et aux energies alternatives, STMicroelectronics SA
Abstract: A structure for protecting an integrated circuit against electrostatic discharges, including a device for removing overvoltages between first and second power supply rails; and a protection cell connected to a pad of the circuit including a diode having an electrode, connected to a region of a first conductivity type, connected to the second power supply rail and having an electrode, connected to a region of a second conductivity type, connected to the pad and, in parallel with the diode, a thyristor having an electrode, connected to a region of the first conductivity type, connected to the pad and having a gate, connected to a region of the second conductivity type, connected to the first rail, the first and second conductivity types being such that, in normal operation, when the circuit is powered, the diode is non-conductive.
Type:
Grant
Filed:
August 20, 2010
Date of Patent:
December 17, 2013
Assignee:
STMicroelectronics S.A.
Inventors:
Philippe Galy, Christophe Entringer, Jean Jimenez
Abstract: A package includes a first die and a second die, at least one of said first and second dies being a memory. The dies are connected to each other through an interface. The interface is configured to transport both control signals and memory transactions. A sampling circuit samples the control signals before transport on the interface. The sampling circuit is controlled in dependence on at least one quality of service parameter associated with a respective control signal.
Abstract: Bistable carbazole compounds of formula (I) are described, wherein M is Fe, Co, Ru or Os, preferably Fe, useful as basic functional units for computing systems based on the QCA (Quantum Cellular Automata) paradigm; a process for their preparation is also described.
Type:
Grant
Filed:
March 9, 2011
Date of Patent:
December 17, 2013
Assignee:
STMicroelectronics S.r.l.
Inventors:
Pier Giorgio Cozzi, Luca Zoli, Alessandro Paolo Bramanti
Abstract: A set-top-box has on-chip OTP memory emulated using an external flash memory and a series of on-chip fuses. The external memory is comprised of one or more regions, each having its own unique region identification. Each on-chip fuse corresponds to one of the memory regions and comprises a component which can be caused to change to a particular (blown) state irreversibly. When data first needs to be written to a region of the external memory, the identification of that region is appended to the data itself together with a parity field and a validity field. The resultant data packet is then encrypted by a cryptographic circuit using a secret key unique to the set-top-box and the encrypted data packet is written to the specified region of the external memory. Then, the on-chip fuse corresponding to the region that has been written to is irreversibly blown, effectively locking that region.
Abstract: A system for adjusting the light uniformity of a monitor. The system comprises a camera for capturing a test pattern image on a display of the monitor and a controller configured to select the test pattern image and to cause the monitor to display the selected test pattern image. The controller receives the captured image from the camera and compares pixel values from the captured image to known pixel values associated with the selected test pattern image. The selected test pattern image has an ideal uniform light distribution and the captured image has a non-uniform light distribution. In response to the comparison, the controller calculates a compensation light distribution that may be combined with the non-uniform light distribution to generate a resulting image on the display of the monitor having a resulting light distribution that approximates the ideal uniform light distribution.
Abstract: A sensor device for an electronic apparatus, including a sensing structure for generating a first detection signal, and a dedicated integrated circuit connected to the sensing structure for detecting a first event associated with the electronic apparatus and for generating a first interrupt signal upon detection of the first event. The dedicated integrated circuit detects the first event as a function of a temporal evolution of the first detection signal, and in particular as a function of values assumed by the first detection signal within one or more successive time windows, and of a relation between the values.
Abstract: A demodulator comprising an input structured to receive at least one past value and a current value both associated with the same bit transmitted in different time instants, a bit decoder configured to provide a decoded bit from an input value, a quality signal evaluation module configured to provide a quality signal representing a quality of the current value, and a filtering module structured to provide a filtered value computed as a weighted average of said at least one past value and said current value. Moreover the demodulator comprises a selection module connected between said input and said bit decoder, configured to transfer the current value as the input value of the bit decoder if the quality is greater than a reference value or transfer the filtered value as the input value of the bit decoder if the quality is not greater than the reference value.
Abstract: An integrated circuit including an intrusion attack detection device. The device includes a single-piece formed of a conductive material and surrounded with an insulating material and includes at least one stretched or compressed elongated conductive track, connected to a mobile element, at least one conductive portion distant from said piece and a circuit for detecting an electric connection between the piece and the conductive portion. A variation in the length of said track in an attack by removal of the insulating material, causes a displacement of the mobile element until it contacts the conductive portion.
Abstract: A control device controls a switching circuit of a DC-DC converter. The switching circuit includes a half-bridge with at least first and second switches connected between an input voltage and a reference voltage. The converter comprises a transformer with a primary coupled with the center point of the half-bridge and a secondary coupled with a load. The control device comprises an error detector configured to determine an error signal representing a difference between a first signal representative of the voltage across the load and a first reference signal and a frequency controller configured to increase the switching frequency of the half-bridge when the error signal is kept below a second signal.
Type:
Application
Filed:
December 19, 2011
Publication date:
December 12, 2013
Applicant:
STMicroelectronics S.r.I.
Inventors:
Alberto Stroppa, Claudio Spini, Claudio Adragna
Abstract: A rectifier building block has four electrodes: source, drain, gate and probe. The main current flows between the source and drain electrodes. The gate voltage controls the conductivity of a narrow channel under a MOS gate and can switch the RBB between OFF and ON states. Used in pairs, the RBB can be configured as a three terminal half-bridge rectifier which exhibits better than ideal diode performance, similar to synchronous rectifiers but without the need for control circuits. N-type and P-type pairs can be configured as a full bridge rectifier. Other combinations are possible to create a variety of devices.
Abstract: Embodiments are directed to efficient frequency-domain implementations of time-varying FIR filters. More specifically, time-varying FIR filters according to embodiments exploit the duality of the fast Fourier transform that windowing in the time domain equals convolution in the frequency domain. In one embodiment, convolution of the output of the FIR filter and a desired windowing function is performed in the frequency domain instead of taking the output of the FIR filter in the frequency domain, converting this output the time domain via an IFFT, and then windowing this output in the time domain before again converting back to the frequency domain. As long as the windowing function has certain characteristics, then the time-varying FIR filter is computationally efficient and introduces minimal audible artifacts into the output of the filter. Concepts described herein are discussed in terms of audio signals and systems but are not limited to audio signals and systems.
Abstract: A clock frequency of a clock signal is calculated, with the clock signal being received by an IC card from a terminal or an internal clock within the IC card. A first time-stamp is received from the terminal, and a first value of the timer is set. The timer of the IC card is started when the first time-stamp is received. A second time-stamp is received, and a second value of the timer is read when the second time-stamp is received. The frequency is calculated by comparing a difference between the second and the first timer values, and a difference between the second and the first time stamps.
Type:
Application
Filed:
December 23, 2011
Publication date:
December 12, 2013
Applicant:
STMicroelectronics International N.V.
Inventors:
Vitantonio Distasio, Francesco Varone, Amedeo Veneroso
Abstract: A method for identifying non stuck-at faults in a read-only memory (ROM) includes generating a golden value of a victim cell, providing a fault-specific pattern through an aggressor cell, generating a test reading of the victim cell in response to the provided fault-specific pattern, and determining whether the ROM has at least one non stuck-at fault. The determination is based on a comparison of the golden value and the test reading of the victim cell.
Abstract: Parallelization of decoding of a data stream encoded with a variable length code includes determining one or more markers, each of which indicates a position within the encoded data stream. The determined markers are included into the encoded data stream together with the encoded data. At the decoder side, the markers are parsed from the encoded data stream and based on the extracted markers. The encoded data is separated into partitions, which are decoded separately and in parallel.
Type:
Application
Filed:
August 9, 2013
Publication date:
December 12, 2013
Applicant:
STMicroelectronics International N.V.
Inventors:
Surinder Pal SINGH, Aneesh BHASIN, Kaushik SAHA
Abstract: A diagnostic device includes a photodiode (2) formed by a body (10) of semiconductor material having a first surface (6a), an integrated optical structure (30) on the first surface and having a second surface (34a), and at least one detection region (50) on the second surface. The at least one detection region includes at least one receptor (52) that binds to a corresponding target molecule (MB) that can be mated with a corresponding marker (54), which, when excited by radiation having a first wavelength (?e), emits radiation having a second wavelength (?f) that can be detected by the photodiode. The integrated optical structure includes at least a first layer (34, 62) of a first material having a first refractive index (n1). The first layer has a thickness substantially equal to an integer and odd multiple of one fourth of the first wavelength (?e) divided by the first refractive index.
Type:
Application
Filed:
May 24, 2013
Publication date:
December 12, 2013
Applicant:
STMicroelectronics S.r.I.
Inventors:
Lucio Renna, Clelia Carmen Galati, Natalia Maria Rita Spinella, Piero Giorgio Fallica
Abstract: An avalance diode including, between two heavily-doped regions of opposite conductivity types arranged at the surface of a semiconductor region, a lightly-doped region, with length L of the lightly-doped region between the heavily-doped regions approximately ranging between 50 and 200 nm.