Patents Assigned to Tohoku University
  • Patent number: 8679640
    Abstract: Provided is an Al alloy member with an excellent mechanical strength that is sufficient for use in large-scale manufacturing apparatuses. The Al alloy member is characterized in that, in mass %, Mg concentration is 5.0% or less, Ce concentration is 15% or less, Zr concentration is 0.15% or less, the balance comprises Al and unavoidable impurities, the elements of the unavoidable impurities are respectively 0.01% or less, and the Vickers hardness of the Al alloy member is greater than 30.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 25, 2014
    Assignees: National University Corporation Tohoku University, Nippon Light Metal Company, Ltd.
    Inventors: Tadahiro Ohmi, Masafumi Kitano, Minoru Tahara, Hisakazu Ito, Kota Shirai, Masayuki Saeki
  • Patent number: 8679369
    Abstract: Disclosed is a method for prediction of a film material such as a raw material for organic EL. In the method, a film material having an evaporation rate (V(%)) represented by the formula below can be predicted based on the values of the constant (Ko) and the activation energy (Ea). V=(Ko/P)×e?Ea/kT wherein Ko represents a constant (%·Torr), P represents a pressure (Torr), Ea represents an activation energy (eV), k represents a Boltzmann constant, and T represents an absolute temperature.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: March 25, 2014
    Assignee: Tohoku University
    Inventors: Tadahiro Ohmi, Shozo Nakayama, Hironori Ito
  • Patent number: 8682482
    Abstract: The working support robot system of the present invention includes: a robot arm (11); a measuring unit (12) for measuring the worker's position; a work progress estimation unit (13) for estimating the work progress based on data input from the measuring unit (12) while referring to data on work procedure, and for selecting objects necessary for the next task when the work is found to have advanced to the next procedure; and an arm motion planning unit (14) for planning the trajectory of the robot arm (11) to control the robot arm (11) based on the work progress estimated by the work progress estimation unit (13) and selected objects. The working support robot system can deliver objects such as tools and parts to the worker according to the work to be performed by the worker.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 25, 2014
    Assignees: Toyota Motor East Japan, Inc., Tohoku University
    Inventors: Kazuhiro Kosuge, Yusuke Sugahara, Jun Kinugawa, Yuta Kawaai, Akiyoshi Ito, Yoichi Matsui, Shinji Kawabe
  • Patent number: 8680633
    Abstract: A magnetoresistive element according to an embodiment includes a first magnetic layer, a second magnetic layer, and a first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, the first magnetic layer including a magnetic film of MnxGey (77 atm %?x?82 atm %, 18 atm %?y?23 atm %, x+y=100 atm %).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 25, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tohoku University
    Inventors: Yushi Kato, Tadaomi Daibou, Eiji Kitagawa, Takao Ochiai, Takahide Kubota, Shigemi Mizukami, Terunobu Miyazaki
  • Patent number: 8680632
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 25, 2014
    Assignees: Kabushiki Kaisha Toshiba, WPI-AIMR, Tohoku University
    Inventors: Tadaomi Daibou, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Publication number: 20140079086
    Abstract: A laser diode capable of performing self-pulsation operation, and capable of sufficiently reducing the coherence of laser light and stably obtaining low-noise laser light is provided. The laser diode includes: a laser chip including at least one laser stripe which extends in a resonator length direction between a first end surface and a second end surface opposed to each other, in which the laser stripe includes a gain region and a saturable absorption region in the resonator length direction, and the width of the laser stripe in the saturable absorption region is larger than the width of the laser stripe in the gain region.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicants: Tohoku University, Sony Corporation
    Inventors: Makoto Oota, Hiroyuki Yokoyama, Masaru Kuramoto, Masao Ikeda
  • Patent number: 8674079
    Abstract: Provided are an antibody which binds specifically PAR1 (protease activated receptor 1) or a fragment of the antibody which retains similar characteristics thereto; a composition containing the same for inhibiting the migration activity and invasion activity of cancer cells; and a medicinal composition for treating cancer and the like.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: March 18, 2014
    Assignee: Tohoku University
    Inventors: Kohsuke Gonda, Hideo Higuchi, Noriaki Ohuchi, Motohiro Takeda
  • Patent number: 8662471
    Abstract: There is provided a solenoid valve that realizes space-saving by reducing the size of a dedicated driving power source. There is provided a solenoid valve capable of instantaneously opening and closing that includes an electric double layer capacitor having a low direct current internal resistance and a low equivalent series resistance as a motive power supply. The electric double layer capacitor has single-cell electrical properties including a capacitance of 1 to 5 F, a rated voltage of 21 to 2.7 V, a direct current internal resistance of 0.01 to 0.1?, and an equivalent series resistance at 1 KHz of 0.03 to 0.09?, and includes a polarizable electrode made of glassy carbon having a specific surface area of 1 to 500 m2/g.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 4, 2014
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University
    Inventors: Tadahiro Ohmi, Kouji Nishino, Tsuyoshi Tanigawa, Michio Yamaji, Nobukazu Ikeda, Ryousuke Dohi
  • Patent number: 8663439
    Abstract: A sputtering target for producing a metallic glass membrane characterized in comprising a structure obtained by sintering atomized powder having a composition of a ternary compound system or greater with at least one or more metal elements selected from Pd, Zr, Fe, Co, Cu and Ni as its main component (component of greatest atomic %), and being an average grain size of 50 ?m or less. The prepared metallic glass membrane can be used as a substitute for conventional high-cost bulk metallic glass obtained by quenching of molten metal. This sputtering target for producing the metallic glass membrane is also free from problems such as defects in the metallic glass membrane and unevenness of composition, has a uniform structure, can be produced efficiently and at low cost, and does not generate many nodules or particles. Further provided is a method for manufacturing such a sputtering target for forming the metallic glass membrane.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: March 4, 2014
    Assignees: JX Nippon Mining & Metals Corporation, Tohoku University
    Inventors: Atsushi Nakamura, Masataka Yahagi, Akihisa Inoue, Hisamichi Kimura, Shin-ichi Yamaura
  • Patent number: 8652091
    Abstract: A fluid injection device includes: a pulse generation section that includes a fluid chamber whose volume is changeable, and an inlet flow passage and an outlet flow passage that are connected to the fluid chamber; a first connection flow passage connected to the outlet flow passage, having an end portion; a second connection flow passage connected to the inlet flow passage; a fluid injection opening formed at the end portion of the first connection flow passage, having a diameter smaller than the diameter of the outlet flow passage; a connection flow passage tube including the first connection flow passage and having rigidity adequate to transmit pulses of fluid flowing from the fluid chamber to the fluid injection opening; and a pressure generation section that supplies fluid to the inlet flow passage.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: February 18, 2014
    Assignees: Seiko Epson Corporation, Tohoku University
    Inventors: Takeshi Seto, Kazuo Kawasumi, Kazuyoshi Takayama, Seyed Hamid Reza Hosseini
  • Patent number: 8652199
    Abstract: To provide a stent which holds various performances such as deliverability, prevention of restenosis, flexible shape conformability, and so on and is therefore adaptable not only to a bile duct but also to a blood vessel system such as a tortuous coronary artery substantially without causing restenosis. A stent with an autonomic function is made of a Ti—Ni based shape memory alloy and has a maximum expanding force at a center portion in its lengthwise direction.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: February 18, 2014
    Assignees: NEC Tokin Corporation, Tohoku University, Japan Stent Technology Co., Ltd.
    Inventors: Michihide Ozawa, Kiyoshi Yamauchi, Yuji Sutou, Takamitsu Takagi, Shuzou Yamashita, Kouji Mori
  • Patent number: 8652399
    Abstract: A sputtering target for producing a metallic glass membrane characterized in comprising a structure obtained by sintering atomized powder having a composition of a ternary compound system or greater with at least one or more metal elements selected from Pd, Zr, Fe, Co, Cu and Ni as its main component (component of greatest atomic %), and being an average grain size of 50 ?m or less. The prepared metallic glass membrane can be used as a substitute for conventional high-cost bulk metallic glass obtained by quenching of molten metal. This sputtering target for producing the metallic glass membrane is also free from problems such as defects in the metallic glass membrane and unevenness of composition, has a uniform structure, can be produced efficiently and at low cost, and does not generate many nodules or particles. Further provided is a method for manufacturing such a sputtering target for forming the metallic glass membrane.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: February 18, 2014
    Assignees: JX Nippon Mining & Metals Corporation, Tohoku University
    Inventors: Atsushi Nakamura, Masataka Yahagi, Akihisa Inoue, Hisamichi Kimura, Shin-ichi Yamaura
  • Patent number: 8648393
    Abstract: An accumulation mode transistor has an impurity concentration of a semiconductor layer in a channel region at a value higher than 2×1017 cm?3 to achieve a large gate voltage swing.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 11, 2014
    Assignees: National University Corporation Tohoku University, Foundation for Advancement of International Science
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Rihito Kuroda
  • Patent number: 8642066
    Abstract: Disclosed is a drug delivery system for delivering a drug at a sustained constant rate for a long period, which can be transplanted into an affected part safely and in a simple manner and can deliver a drug to the affected part for a long period. Specifically disclosed is a sustained drug delivery system in which an implant is implanted into a body, wherein the implant is a PEG capsule comprising a box-shaped PEG and a porous PEG sheet.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 4, 2014
    Assignee: Tohoku University
    Inventors: Toshiaki Abe, Nobuhiro Nagai, Hirokazu Kaji, Takeaki Kawashima, Matsuhiko Nishizawa, Koji Nishida
  • Patent number: 8642187
    Abstract: A structural member for a manufacturing apparatus has a metal base member mainly composed of aluminum, a high-purity aluminum film formed on the surface of the metal base member, and a nonporous amorphous aluminum oxide passivation film which is formed by anodizing the high-purity aluminum film. A method for producing a structural member for a manufacturing apparatus, includes forming a high-purity aluminum film on the surface of a metal base member mainly composed of aluminum, and anodizing the high-purity aluminum film in a chemical conversion liquid having a pH of 4-10 and containing a nonaqueous solvent, which has a dielectric constant lower than that of water and dissolves water, thereby converting at least a surface portion of the high-purity aluminum film into a nonporous amorphous aluminum oxide passivation film.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 4, 2014
    Assignees: National University Corporation Tohoku University, Mitsubishi Chemical Corporation
    Inventors: Tadahiro Ohmi, Minoru Tahara, Yasuhiro Kawase
  • Patent number: 8643106
    Abstract: A transistor capable of adjusting a threshold value is obtained by adjusting an impurity concentration of a silicon substrate supporting an SOI layer and by controlling a thickness of a buried insulating layer formed on a surface of the silicon substrate in contact with the SOI layer.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: February 4, 2014
    Assignees: National University Corporation Tohoku University, Foundation for Advancement of International Science
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Cheng Weitao
  • Patent number: 8642972
    Abstract: [Problems to be Solved] A neutron scintillator excellent in neutron detection efficiency and n/? discrimination ability, and a neutron detector using the neutron scintillator are provided. [Means to Solve the Problems] A neutron scintillator comprising a eutectic body composed of laminar lithium fluoride crystals and laminar calcium fluoride crystals alternately arranged in layers, the thickness of the lithium fluoride crystal layers in the eutectic body being 0.1 to 5 ?m; or a neutron scintillator comprising a eutectic body composed of laminar lithium fluoride crystals and laminar calcium fluoride crystals alternately arranged in layers, the calcium fluoride crystal layers in the eutectic body being linearly continuous in at least one direction; and a neutron detector basically constructed from any of the neutron scintillators and a photodetector.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: February 4, 2014
    Assignees: Tokuyama Corporation, Tohoku University
    Inventors: Kentaro Fukuda, Sumito Ishizu, Noriaki Kawaguchi, Toshihisa Suyama, Akira Yoshikawa, Takayuki Yanagida, Yui Yokota
  • Patent number: 8633395
    Abstract: A multilayer wiring board 100 comprises a first wiring region 101 where wirings 103a and insulating layers 104a and 104b are alternately laminated, and a second wiring region 102 where a thickness H2 of an insulating layer 104 is twice or more a thickness H1 of the insulating layer in the first wiring region 101 and a width W2 of a wiring 103b is twice or more a width W1 of the wiring in the first wiring region 101. The first wiring region 101 and the second wiring region 102 are integrally formed on the same board.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: January 21, 2014
    Assignees: National University Corporation Tohoku University, Foundation For Advancement of International Science
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa, Hiroshi Imai, Akinobu Teramoto
  • Patent number: 8615027
    Abstract: A laser diode capable of performing self-pulsation operation, and capable of sufficiently reducing the coherence of laser light and stably obtaining low-noise laser light is provided. A laser diode includes: a laser chip including at least one laser stripe which extends in a resonator length direction between a first end surface and a second end surface opposed to each other, in which the laser stripe includes a gain region and a saturable absorption region in the resonator length direction, and the width of the laser stripe in the saturable absorption region is larger than the width of the laser stripe in the gain region.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 24, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Makoto Oota, Hiroyuki Yokoyama, Masaru Kuramoto, Masao Ikeda
  • Patent number: 8613231
    Abstract: Provided are multiple normal stress detection sensor units capable of detecting a normal stress, and a sheet layer portion. The sheet layer portion includes an exterior sheet layer portion, a force detection sheet layer portion incorporating normal stress detection units, and an intermediary layer sandwiched between the exterior sheet layer portion and the force detection sheet layer portion. The exterior sheet layer portion and the force detection sheet layer portion include multiple protrusions protruding in directions opposed to each other, and are disposed such that the protrusions engage each other with the intermediary layer interposed therebetween. Each normal stress detection sensor unit includes a central portion detection sensor device disposed immediately below a central portion of the protrusion provided on the force detection sheet portion, and at least two edge detection sensor devices disposed immediately below edge portions of the protrusion provided on the force detection sheet portion.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: December 24, 2013
    Assignees: Tohoku University, Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Masanori Muroyama, Masayoshi Esashi, Shuji Tanaka, Sakae Matsuzaki, Mitsutoshi Makihata, Yutaka Nonomura, Motohiro Fujiyoshi, Takahiro Nakayama, Hitoshi Yamada, Ui Yamaguchi