Patents Assigned to Tohoku University
  • Patent number: 8483256
    Abstract: A laser diode element assembly includes: a laser diode element; and a light reflector, in which the laser diode element includes (a) a laminate structure body configured by laminating, in order, a first compound semiconductor layer of a first conductivity type made of a GaN-based compound semiconductor, a third compound semiconductor layer made of a GaN-based compound semiconductor and including a light emission region, and a second compound semiconductor layer of a second conductivity type made of a GaN-based compound semiconductor, the second conductivity type being different from the first conductivity type, (b) a second electrode formed on the second compound semiconductor layer, and (c) a first electrode electrically connected to the first compound semiconductor layer, the laminate structure body includes a ridge stripe structure, and a minimum width Wmin and a maximum width Wmax of the ridge stripe structure satisfy 1<Wmax/Wmin<3.3 or 6?Wmax/Wmin?13.3.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: July 9, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Tomoyuki Oki, Masaru Kuramoto, Rintaro Koda, Hideki Watanabe, Hiroyuki Yokoyama
  • Patent number: 8481248
    Abstract: A method for fabricating a micromachine component of resin comprising step (a) of forming a sacrifice layer on a substrate, step (b) of forming at least two photosensitive resin composition layers sequentially on the sacrifice layer, and performing photolithography of each photosensitive resin composition layer to form an air gap portion defining the circumferential edge portion of the micromachine component and an air gap portion where an internal structure of the micromachine component is constituted to form a multilayer structure, step (c) for depositing dry film resist on the multilayer structure of the cured photosensitive resin composition layer, and performing photolithography of the dry film resist layer to form a cured dry film resist layer in which an air gap portion defining the circumferential edge of a shroud layer and an air gap where the structure of the shroud layer is constituted are formed, and step (d) for separating the micromachine component having the multilayer structure of the cured ph
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: July 9, 2013
    Assignees: Tohoku University, Nippon Kayaku Kabushiki Kaisha
    Inventors: Nao Honda, Satoshi Mori, Shuji Tanaka, Masayoshi Esashi
  • Patent number: 8482640
    Abstract: An independent pixel output line (14) is provided for each of two-dimensionally arranged pixels (10) within a pixel area (2a). A plurality of memory sections are connected to each pixel output line (14). In a continuous reading mode, photocharge storage is simultaneously performed at all the pixels, and signals are collectively transferred from the pixels (10) through the pixel output lines (14) to the memory sections, after which the signals held in the memory sections are sequentially read and outputted. In a burst reading mode, the operations of simultaneously storing photocharges at all the pixels and collectively transferring signals from each pixel (10) through the pixel output line (14) to the memory sections are sequentially performed for each of the memory sections to hold signals corresponding to a plurality of frames.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: July 9, 2013
    Assignees: Tohoku University, Shimadzu Corporation
    Inventors: Shigetoshi Sugaw, Yasushi Kondo, Hideki Tominaga
  • Patent number: 8478395
    Abstract: The invention provides a method for evaluating a corneal disorder quantitatively and is applicable to living eyes. In particular, the invention provides a method for measuring a corneal transepithelial electric resistance, which method comprises: (1) a step of placing a first electrode on the cornea and a second electrode on the conjunctiva; and (2) a step of flowing an electric current between the first electrode and the second electrode to measure the electric resistance. The invention also provides a device for measuring a corneal transepithelial electric resistance value.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: July 2, 2013
    Assignees: Nagasaki University, Tohoku University
    Inventors: Masafumi Uematsu, Takashi Kitaoka, Koji Nishida, Yuji Tanaka, Matsuhiko Nishizawa, Hirokazu Kaji, Soichiro Sekine
  • Patent number: 8470986
    Abstract: A method for producing an oxazoline derivative from a non-protected sugar in a simple manner and a method for producing a glycoside by utilizing the product of the aforementioned method are disclosed. A sugar oxazoline derivative is synthesized in one step in an aqueous solution from a sugar having a free hemiacetal hydroxy group and an amide group by using a haloformamidinium derivative as a dehydration/condensation agent. A glycoside is produced by using the oxazolidine derivative as a sugar donor and also using a sugar dehydrogenase. The method can be applied to the production of a compound having a long sugar chain, and is therefore useful for a production of a physiologically active oligosaccharide, a carrier for a drug delivery system, a surfactant, a carbohydrate pharmaceutical, a glycopeptide, a glycoprotein, a carbohydrate polymer or the like.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 25, 2013
    Assignee: Tohoku University
    Inventors: Shinichiro Shoda, Atsushi Kobayashi, Masato Noguchi, Tomonari Tanaka, Hidetoshi Gyakushi
  • Patent number: 8470144
    Abstract: An electrode device for an electrochemical sensor chip includes an insulation sheet having an insulating property and including a top surface and a bottom surface opposite to each other in a thickness direction, and electrode members having a conductivity and held by the insulation sheet in portions piercing the insulation sheet in a thickness direction, one ends of the electrode members located on the top surface side of the insulation sheet being connected to the analyte, other ends located on the bottom surface side of the insulation sheet being connected to the electrodes of the transducer, recesses for trapping the analyte being formed in the top surface of the insulation sheet so as to correspond to the electrode members, the one ends of the electrode members being exposed at a bottom of the recesses.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: June 25, 2013
    Assignees: Japan Aviation Electronics Industry, Limited, National University Corporation Tohoku University
    Inventors: Atsushi Suda, Tatsuo Kimura, Ryota Kunikata, Kosuke Ino, Tomokazu Matsue
  • Patent number: 8465426
    Abstract: An ultrasonic diagnostic apparatus according to the present invention includes: a transmitting section 102 that drives an ultrasonic probe to transmit an ultrasonic wave toward a measuring region of a subject including an arterial vascular wall; a receiving section 101 that receives a reflected wave, produced by getting the ultrasonic wave reflected by the subject, at the ultrasonic probe to generate a received signal; a movement information deriving section 110 for deriving information about at least the axial movement of the arterial vascular wall based on the received signal; and a boundary locating section 109 for locating at least one of the blood flow-intima boundary, the media-adventitia boundary and the adventitia-body's connective tissue boundary of the arterial vascular wall in the measuring region based on the movement information.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: June 18, 2013
    Assignees: Tohoku University, Panasonic Corporation
    Inventors: Hiroshi Kanai, Hideyuki Hasegawa, Takenori Fukumoto
  • Patent number: 8465719
    Abstract: A silicon carbide substrate has a high-frequency loss equal to or less than 2.0 dB/mm at 20 GHz is effective to mount and operate electronic components. The silicon carbide substrate is heated at 2000° C. or more to be reduced to the high-frequency loss equal to 2.0 dB/mm or less at 20 GHz. Moreover, manufacturing the silicon carbide substrate by CVD without flowing nitrogen into a heater enables the high-frequency loss to be reduced to 2.0 dB/mm or less.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: June 18, 2013
    Assignees: National University Corporation Tohoku University, Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Sumio Sano, Fusao Fujita
  • Patent number: 8460485
    Abstract: A Co—Cr—Mo alloy with nitrogen addition composed of 26 to 35% by weight of Cr, 2 to 8% by weight of Mo, 0.1 to 0.3% by weight of N, and balance of Co is subjected to solution treatment and then subjected to isothermal aging treatment holding the alloy at 670 to 830° C. for a predetermined period of time to form a multi-phase structure composed of an ?-phase and a Cr nitride by means of an isothermal aging effect. After cooling, the alloy subjected to reverse transformation treatment in which the alloy is heated at a temperature range of 870 to 1100° C. for reverse transformation to a single ?-phase from the multi-phase structure composed of an ?-phase and a Cr nitride.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: June 11, 2013
    Assignee: Tohoku University
    Inventors: Shingo Kurosu, Akihiko Chiba, Hiroaki Matsumoto
  • Patent number: 8449392
    Abstract: A player object is caused to perform a motion in a virtual game world in accordance with information corresponding to a biological signal acquired from a player. Biological signal acquisition means acquires the biological signal from the player. Pulse detection means detects pulse or heartbeat of the player in accordance with the biological signal acquired by the biological signal acquisition means. Player object motion control means causes the player object to discharge a discharge object in the virtual game world when the pulse detection means detects the pulse or the heartbeat.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: May 28, 2013
    Assignees: Nintendo Co., Ltd., Tohoku University
    Inventors: Norikatsu Furuta, Makoto Yoshizawa, Norihiro Sugita, Tomoyuki Yambe, Goro Abe
  • Patent number: 8445401
    Abstract: It has been demanded to produce titanium dioxide having an excellent photocatalytic activity and an excellent super-hydrophilic property by a simple procedure suitable for the production on an industrial scale. Rutile-type titanium dioxide having an excellent photocatalytic activity can be produced by carrying out the anodic oxidization of the surface of a base material comprising titanium or a titanium alloy by applying a voltage (e.g., a high voltage) or carrying out the anodic oxidation of the surface of the base material under high current density conditions. Further, a film is produced on the surface of the base material by the anodic oxidation technique by applying a voltage or the anodic oxidization technique under high current density conditions, and the film is subjected to heat treatment, thereby producing rutile-type titanium dioxide having excellent crystallinity.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 21, 2013
    Assignees: Tohoku University, Osaka Prefecture University
    Inventors: Naoya Masahashi, Yoshiteru Mizukoshi, Naofumi Ootsu, Yu Matsuda, Satoshi Senboshi
  • Patent number: 8442079
    Abstract: Provided is a driving method of a mode-locked semiconductor laser device comprising a laminated structure in which a first compound semiconductor layer, a third compound semiconductor layer having an emission region and a second compound semiconductor layer are successively laminated, a second electrode, and a first electrode. The laminated structure is formed on a compound semiconductor substrate having polarity, the third compound semiconductor layer includes a quantum well structure having a well layer and a barrier layer. The well layer has a depth of 1 nm or more and 10 nm or less. The barrier layer has an impurity doping density of 2×1018 cm?3 or more and 1×1020 cm?3 or less. An optical pulse is generated in the emission region by passing a current from the second electrode to the first electrode via the laminated structure.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 14, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Tomoyuki Oki, Masaru Kuramoto, Masao Ikeda, Takao Miyajima, Hideki Watanabe, Hiroyuki Yokoyama
  • Patent number: 8425567
    Abstract: A spinal fixation titanium alloy rod fixes a plurality of spinal-fixing screws embedded and fixed in vertebrae of a human body. The rod is cylindrically shaped, has a sufficient length for coupling with the spinal-fixing screws, and has a diameter adjusted to 4 to 7 mm. In the titanium alloy constituting the rod, Nb content is 25 to 35 percent by weight, Ta content is such that the Nb content+0.8×Ta content ranges from 36 to 45 percent by weight, Zr content is 3 to 6 percent by weight, and the remainder is Ti and unavoidable impurities, excluding vanadium. The titanium alloy is manufactured by swaging processing at a cross-sectional reduction rate of at least 90%, and aging the swaged titanium alloy by heating at a temperature of 600 to 800K, preferably 700 to 800K, for 43.2 ks to 604.8 ks.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 23, 2013
    Assignees: Showa-Ika Kogyo Co. Ltd., National University Corporation Tohoku University
    Inventors: Mitsuo Niinomi, Masaaki Nakai, Kengo Narita
  • Patent number: 8421007
    Abstract: An X-ray detection system has an electron beam irradiation portion, a diffraction grating, a splitter for distributing the direction of propagation of the diffracted X-rays such that an imaging plane for the diffracted X-rays is assigned to plural positions spaced apart in a direction perpendicular to the direction of energy dispersion of the diffracted X-rays, and image sensors different in energy sensitivity disposed respectively at the positions to which the imaging plane is assigned.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: April 16, 2013
    Assignees: Tohoku University, JEOL Ltd.
    Inventors: Masami Terauchi, Takanori Murano, Nobuo Handa, Hideyuki Takahashi
  • Patent number: 8420847
    Abstract: A novel bis-phosphate compound is provided which can be applied to a wide range of reactive substrates and reactions as an asymmetric reaction catalyst and can realize an asymmetric reaction affording a high yield and a high enantiomeric excess. The bis-phosphate compound has a tetraaryl skeleton represented by General Formula (1). In an asymmetric reaction, an amidodiene and an unsaturated aldehyde compound are reacted with each other in the presence of the optically active bis-phosphate compound to give an optically active amidoaldehyde. The invention allows a reaction such as an asymmetric Diels-Alder reaction to proceed efficiently, which has been difficult with conventional mono-phosphate compounds.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: April 16, 2013
    Assignees: National University Corporation Tohoku University, API Corporation
    Inventors: Masahiro Terada, Norie Momiyama, Tohru Konno
  • Patent number: 8418714
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: April 16, 2013
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 8408444
    Abstract: It is an object to provide a friction stir tool excellent in productivity, high temperature strength, and wear resistance at high temperatures. The friction stir tool is formed of a Co-based alloy comprising crystal grains containing a ?? precipitate phase dispersed and precipitated therein, and a crystal grain boundary region and a precipitate phase between adjacent crystal grains, in which the precipitate phase is at least one phase selected from a ? phase, a Laves phase and a carbide phase.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: April 2, 2013
    Assignees: Hitachi, Ltd., Tohoku University
    Inventors: Seunghwan Park, Satoshi Hirano, Shinya Imano, Jun Sato, Hiroyuki Kokawa, Yutaka Sato, Kiyohito Ishida, Toshihiro Omori
  • Patent number: 8406379
    Abstract: In one embodiment of the present invention, a curvature distribution crystal lens of the present invention is obtained via press-molding. In the case of a Ge single crystal plate, a temperature for the press-molding is in a range 1° C. to 120° C. lower than a melting point. In the case of a Si single crystal plate, a temperature for the press-molding is in a range 1° C. to 200° C. lower than a melting point. The curvature distribution crystal lens has a crystal lattice plane forming a 1D cylindrically curved surface or a 1D logarithmically curved surface whose valley is in a direction perpendicular to a direction having a maximum curvature, the direction having the maximum curvature being within 30° from a [001] or [1-10] direction in a (110) plane. As a result, it is possible to make an integrated reflection intensity uniform and to make a half-value width uniform in a wide range.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: March 26, 2013
    Assignees: Kyoto University, Tohoku University
    Inventors: Hiroshi Okuda, Kazuo Nakajima, Kozo Fujiwara
  • Patent number: 8404043
    Abstract: A high-quality polycrystalline bulk semiconductor having a large crystal grain size is produced by the casting method in which growth is regulated so as to proceed in the same plane direction, i.e., the {110}; plane or {112} plane is disclosed. The process, which is for producing a polycrystalline bulk semiconductor, comprises: a step in which a melt of a semiconductor selected among Si, Ge, and SiGe is held in a crucible; a step in which a bottom part of the crucible is cooled to give a temperature gradient and that part of the melt which is located directly on the crucible bottom is rapidly cooled in the beginning of growth to supercool the melt around the crucible bottom; a step in which the crucible is cooled to grow nuclei on the crucible bottom due to the supercooled state of the melt around the crucible bottom and thereby grow dendritic crystals along the crucible bottom; and a step in which a polycrystalline bulk of the semiconductor is then grown on the upper side of the dendritic crystals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 26, 2013
    Assignee: Tohoku University
    Inventors: Kozo Fujiwara, Kazuo Nakajima
  • Patent number: 8399862
    Abstract: When positively charged ions are implanted into a target substrate, charge-up damage may occur on the target substrate. In order to suppress charge-up caused by secondary electrons emitted from the target substrate when positively charged ions are implanted, a conductive member is installed at a position facing the target substrate and electrically grounded with respect to a high frequency. Further, a field intensity generated in the target substrate may be reduced by controlling an RF power applied to the target substrate in pulse mode.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 19, 2013
    Assignees: National University Corporation Tohoku University, Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Tetsuya Goto, Akinobu Teramoto, Takaaki Matsuoka