Patents Assigned to Tohoku University
  • Patent number: 8124240
    Abstract: A protective film structure of a metal member for use in an apparatus for manufacturing a semiconductor or the like, the protective film structure including a first coating layer of faultless aluminum oxide formed by direct anodic oxidation of a base-material metal of an aluminum alloy; and a second coating layer formed on the first coating layer and made of yttrium oxide by a plasma spraying method.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 28, 2012
    Assignees: Tohoku University, Mitsubishi Chemical Corporation, Nihon Ceratec Co., Ltd.
    Inventors: Tadahiro Ohmi, Yasuyuki Shirai, Hitoshi Morinaga, Yasuhiro Kawase, Masafumi Kitano, Fumikazu Mizutani, Makoto Ishikawa, Yukio Kishi
  • Patent number: 8124484
    Abstract: To manufacture a MOS memory device having a dielectric film laminate in which adjacent dielectric films have band-gaps of different magnitudes, a plasma processing device which transmits microwaves to a chamber by means of a planar antenna having a plurality of holes is used to perform plasma CVD under pressure conditions that differ from at least pressure conditions used when forming the adjacent dielectric films, and the dielectric films are sequentially formed by altering the band-gaps of the adjacent dielectric films that constitute the dielectric film laminate.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 28, 2012
    Assignees: Tohoku University, Tokyo Electron Limited
    Inventors: Tetsuo Endoh, Masayuki Kohno, Syuichiro Otao, Minoru Honda, Toshio Nakanishi
  • Patent number: 8120016
    Abstract: A solid-state imaging device, a line sensor and an optical sensor for enhancing a wide dynamic range while keeping high sensitivity with a high S/N ratio, and a method of operating a solid-state imaging device for enhancing a wide dynamic range while keeping high sensitivity with a high S/N ratio are provided. The solid-state imaging device comprises an integrated array of a plurality of pixels, each of which comprises a photodiode PD for receiving light and generating photoelectric charges, a transfer transistor Tr1 for transferring the photoelectric charges, and a storage capacitor element C connected to the photodiode PD at least through the transfer transistor Tr1 for accumulating, at least through the transfer transistor Tr1, the photoelectric charge overflowing from the photodiode PD during accumulating operation.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 21, 2012
    Assignee: National University Corporation Tohoku University
    Inventor: Shigetoshi Sugawa
  • Patent number: 8116035
    Abstract: The invention provides a magnetic recording medium, and a magnetic recording and reproducing apparatus. The magnetic recording medium includes a substrate 11, an under layer 12 formed on the substrate 11, a magnetic recording layer 13 formed on the under layer 12, and a protective layer 14 formed on the magnetic recording layer 13. The magnetic recording layer 13 is composed of a primary recording layer 14 and a secondary recording layer 15 which are mutually exchange-coupled. The primary recording layer 14 has magnetic grains and a nonmagnetic material that surrounds the magnetic grains, and has a perpendicular magnetic anisotropy. The secondary recording layer 15 is made of a material having a negative crystal magnetic anisotropy and its easy plane of the magnetization is a plane of the medium.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: February 14, 2012
    Assignees: Tohoku University, Showa Denko K.K., Kabushiki Kaisha Toshiba
    Inventors: Migaku Takahashi, Masahiro Oka, Akira Kikitsu
  • Patent number: 8116343
    Abstract: An ultrashort pulse/ultra-high power laser diode with a simple structure and configuration. The laser diode can be driven by a pulse current which is 10 or more times higher than a threshold current value. The width of the pulse current is preferably 10 nanoseconds or less, and the value of the pulse current is specifically 0.4 amperes or over.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 14, 2012
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda, Takao Miyajima, Hideki Watanabe
  • Patent number: 8116857
    Abstract: There is provided a non-linear signal separation method using the non-linear state space projection method capable of separating an effective non-linear signal even if the S/N ratio is low by performing the time domain high speed non-linear state space projection when a signal is a multi-channel signal and has a periodicity. In the non-linear signal separation method using the non-linear state space projection method, an original signal having a complex signal which is a multi-channel and cyclic signal measured from one phenomenon is processed by using the time domain high-speed non-linear state space projection method so as to estimate a noise in the original signal and subtract the estimated noise from the original signal, thereby separating the signal to be measured in the original signal as a non-linear signal even when the S/N ratio is low.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: February 14, 2012
    Assignee: Tohoku University
    Inventors: Yoshitaka Kimura, Shinichi Chida, Mitsuyuki Nakao, Kunihiro Okamura, Takuya Ito
  • Patent number: 8111723
    Abstract: An ultrashort pulse/ultra-high power laser diode with a simple structure and configuration is provided. In a method of driving a laser diode, the laser diode is driven by a pulse current which is 10 or more times higher than a threshold current value. The width of the pulse current is preferably 10 nanoseconds or less, and the value of the pulse current is specifically 0.4 amperes or over.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: February 7, 2012
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda, Takao Miyajima, Hideki Watanabe
  • Publication number: 20120021446
    Abstract: Disclosed is an evaluation peptide for evaluating the efficiency of a pretreatment in the quantification of a protein using a mass spectrometer, having high reliability and high general versatility. Also disclosed is an artificial standard protein comprising the evaluation peptide. Further disclosed is a method for quantifying a protein utilizing the artificial standard protein. Specifically disclosed is a method for selecting a peptide which consists of an amino acid sequence not agreeing with that in a naturally occurring protein and a variant thereof and capable of being detected by mass spectrometry and which has an amino acid that can be recognized by a protein-digesting enzyme, and using the peptide as an evaluation peptide for use in the quantification of a protein by a mass spectrometer.
    Type: Application
    Filed: January 27, 2010
    Publication date: January 26, 2012
    Applicant: Tohoku University
    Inventors: Sumio Ohtsuki, Junichi Kamiie, Tetsuya Terasaki
  • Publication number: 20120008142
    Abstract: A method of attaching an object to be measured to a structure causing a diffraction phenomenon; irradiating the structure to which the object to be measured is attached and which causes the diffraction phenomenon with an electromagnetic wave; detecting the electromagnetic wave scattered by the structure causing the diffraction phenomenon; and measuring a characteristic of the object to be measured from the frequency characteristic of the detected electromagnetic wave. The object to be measured is attached directly to the surface of the structure causing the diffraction phenomenon. Thus, the method for measuring the characteristic of an object to be measured exhibits an improved measurement sensitivity and high reproducibility. A structure causing a diffraction phenomenon and used for the method, and a measuring device are provided.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Applicants: National University Corporation Tohoku University, MURATA MANUFACTURING CO., LTD.
    Inventors: Seiji Kamba, Takashi Kondo, Koji Tanaka, Kazuhiro Takigawa, Yuichi Ogawa
  • Patent number: 8092642
    Abstract: Provided is a plasma processing apparatus capable of generating a uniform plasma by preventing a nonuniformity of a current flow in a slot antenna. A dielectric plate is disposed to close a top opening of a plate cover and a slot antenna for generating plasma is disposed on the dielectric plate. By allowing an outer periphery of the slot antenna to make direct contact with an inner wall portion of the plate cover by using a conductive member having elasticity, when a microwave is supplied to slot antenna, it is possible to make an electrical resistance between the inner wall portion of the processing vessel and the outer periphery of the flat plate antenna substantially the same at any point in the entire circumference of the processing vessel, so that magnitude of the microwave current flowing in the slot antenna can be made approximately the same.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 10, 2012
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Toshiaki Hongo, Masaki Hirayama, Tadahiro Ohmi
  • Patent number: 8093918
    Abstract: An electronic device that includes an actual operation circuit that operates during an actual operation of the electronic device, a second test circuit and a third test circuit that operate during a test of the electronic device, and a power supply section. The power supply section, during the actual operation of the electronic device, does not apply a power supply voltage to the second test circuit and applies power supply voltages to the actual operation circuit and the third test circuit. The power supply section, to obtain identification of the electronic device, applies a power supply voltage to the second test circuit.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: January 10, 2012
    Assignees: National University Corporation Tohoku University, Advantest Corporation
    Inventors: Toshiyuki Okayasu, Shigetoshi Sugawa, Akinobu Teramoto
  • Publication number: 20120002271
    Abstract: A semiconductor optical amplifier includes: a laminated structure sequentially including a first compound semiconductor layer composed of GaN compound semiconductor and having a first conductivity type, a third compound semiconductor layer having a light amplification region composed of GaN compound semiconductor, and a second compound semiconductor layer composed of GaN compound semiconductor and having a second conductivity type; a second electrode formed on the second compound semiconductor layer; and a first electrode electrically connected to the first compound semiconductor layer. The laminated structure has a ridge stripe structure. When widths of the ridge stripe structure in a light output end face and the ridge stripe structure in a light incident end face are respectively Wout, and Win, Wout>Win is satisfied. A carrier non-injection region is provided in an internal region of the laminated structure from the light output end face along an axis line of the semiconductor optical amplifier.
    Type: Application
    Filed: June 23, 2011
    Publication date: January 5, 2012
    Applicants: Tohoku University, SONY CORPORATION
    Inventors: Masaru Kuramoto, Masao Ikeda, Rintaro Koda, Tomoyuki Oki, Hideki Watanabe, Takao Miyajima, Hiroyuki Yokoyama
  • Patent number: 8081394
    Abstract: An information recording apparatus has a plurality of fine particles forming an array on a plane in close proximity of each other, each of the plural particles including a ferromagnetic metal, a light-emitting device for exciting a near-field light, and a photo-electric conversion element for detecting a near-field light traveled along the fine particles. Summary information may be recorded for plural information recording parts.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: December 20, 2011
    Assignees: Ricoh Company, Ltd., Tohoku University
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Shin Saito, Tomoyuki Ogawa, Itaru Fujimura, Shigeyoshi Misawa, Toshiyuki Kawasaki
  • Patent number: 8081669
    Abstract: A method of driving an ultrashort pulse and ultrahigh power laser diode device having a simple composition and a simple structure is provided. In the method of driving a laser diode device, light is injected from a light injection means into a laser diode device driven by a pulse current having a value 10 or more times as large as a value of a threshold current.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 20, 2011
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda
  • Publication number: 20110305890
    Abstract: Provided is a method of evaluating properties of ferrite which can continuously measure change in magnetic properties accompanying change in composition of the ferrite merely by preparing one specimen. A composition gradient ferrite thin film constituted of a plurality of composition gradient ferrite layers which are formed by inclining component composition in the horizontal direction is formed on a single crystal substrate having light transmitting property using a thin film forming method, and a magneto-optical effect is continuously measured along the composition gradient direction of the ferrite thin film whereby change in magnetic properties accompanying a change in composition of the ferrite is continuously measured.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 15, 2011
    Applicants: Tohoku University, JFE Mineral Company, Ltd.
    Inventors: Yosuke Iwasaki, Masashi Kawasaki, Tomoteru Fukumura
  • Patent number: 8075868
    Abstract: There is provided an iron arsenate powder which is produced from an arsenic containing solution and wherein the concentration of arsenic eluted or released from the powder is very low. The iron arsenate powder is a powder of dihydrate of iron arsenate, which has a crystal structure of rhombic system and which has lattice constants of a=0.8950 to 0.8956 nm, b=1.0321 to 1.0326 nm and c=1.0042 to 1.0050 nm at room temperatures and atmospheric pressure. The iron arsenate powder can be produced by a method comprising the steps of: adding ferrous ions to an arsenic containing solution to cause the molar ratio (Fe/As) of iron to arsenic in the solution to be not lower than 1; adding an oxidizing agent to the solution; heating the solution to a temperature of not lower than 70° C. while stirring the solution, to allow a reaction; and carrying out a solid-liquid separation to wash the obtained solid part.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 13, 2011
    Assignees: Dowa Metals & Mining Co., Ltd., Tohoku University
    Inventors: Tetsuo Fujita, Takashi Nakamura, Shigeru Suzuki, Kozo Shinoda
  • Patent number: 8076012
    Abstract: Disclosed are a magnetic thin film capable of providing a high uniaxial magnetic anisotropy, Ku, while suppressing the saturation magnetization Ms thereof, and a method for forming the film; and also disclosed are various devices to which the magnetic thin film is applied. The magnetic thin film comprises a Co-M-Pt alloy having an L11-type ordered structure (wherein M represents one or more metal elements except Co and Pt). For example, the Co-M-Pt alloy is a Co—Ni—Pt alloy of which the composition comprises from 10 to 35 at. % of Co, from 20 to 55 at. % of Ni and a balance of Pt. The magnetic thin film is applicable to perpendicular magnetic recording media, tunnel magneto-resistance (TMR) devices, magnetoresistive random access memories (MRAM), microelectromechanical system (MEMS) devices, etc.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 13, 2011
    Assignees: Tohoku University, Fuji Electric Co., Ltd.
    Inventors: Takehito Shimatsu, Hideo Sato, Osamu Kitakami, Satoshi Okamoto, Hajime Aoi, Hiroyasu Kataoka
  • Patent number: 8067809
    Abstract: A semiconductor storage device with excellent electrical characteristics (write/erase characteristics) by favorable nitrogen concentration profile of a gate insulating film, and a method for manufacturing the semiconductor device. The semiconductor device fabricating method operates by transferring charges through a gate insulating film formed between a semiconductor substrate and a gate electrode, including introducing an oxynitriding species previously diluted by plasma excitation gas into a plasma processing apparatus, generating an oxynitriding species by a plasma, and forming an oxynitride film on the semiconductor substrate as the gate insulating film. The oxynitriding species contains NO gas at a ratio of 0.00001 to 0.01% to the total volume of gas introduced into the plasma processing apparatus.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 29, 2011
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Junichi Kitagawa, Shigenori Ozaki, Akinobu Teramoto, Tadahiro Ohmi
  • Patent number: 8054404
    Abstract: A dichroic filter column (4) is provided on an incident surface (11). At least one of two end parts of a light guide plate (1) in a thickness direction is divided into a plurality of light guide paths (6), in a width direction of the light guide plate (1) by a plurality of cutout grooves (5). Portions of the plurality of light guide paths (6) on an incident surface (11) side are aligned in accordance with positions of a plurality of dichroic filters (31), respectively. The plurality of dichroic filters (31) are elements of the dichroic filter column (4).
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: November 8, 2011
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Takahiro Ishinabe, Baku Katagiri, Yoshihiro Hashimoto, Shoichi Ishihara, Shuichi Kozaki, Yutaka Ishii
  • Patent number: 8045772
    Abstract: A system for comparing dental X-ray images includes a positional displacement calculator calculating a positional displacement between dental X-ray test and reference images by using phase-only correlation, a positional displacement corrector correcting the positional displacement, a base point extractor defining, as a base image, any one of the dental X-ray test and reference images, and defining, as a corresponding image, the other one of the two dental images, and extracting base points from the base image, a corresponding point extractor extracting corresponding points, which correspond to the base points, from the corresponding image, a correspondence calculator calculating correspondence between the base points and the corresponding points, a nonlinear distortion corrector correcting a nonlinear distortion between the base image and the corresponding image, based on the correspondence, and a similarity calculator finding, by using phase-only correlation, a similarity between the base image and the corre
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: October 25, 2011
    Assignees: Tohoku University
    Inventors: Eiko Kosuge, Koichi Ito, Takafumi Aoki