Patents Assigned to Vanderbilt University
-
Patent number: 11865723Abstract: An exemplary robotic system includes a plurality of controllable joints and a controller. An exemplary control method provides for controlling the controllable joints by the controller. The control method provides for determining a configuration space for the robotic system and determining a reference movement path within the configuration space. The control method then provides for assigning a plurality of streamlines in the configuration space to yield a flow field based on the reference movement path. The control method then provides for measuring actual velocity vectors of the robotic system in the configuration space. The control method then provides for determining an error velocity vector based on a difference between the actual velocity vector and the desired velocity vector given by the flow field corresponding to the current robot configuration.Type: GrantFiled: April 30, 2019Date of Patent: January 9, 2024Assignee: Vanderbilt UniversityInventors: Michael Goldfarb, Andres Martinez-Guerra, Brian Lawson
-
Patent number: 11856955Abstract: In one aspect, the invention relates to binary compositions that disrupt ORco-mediated odorant sensing. In particular, compounds and compositions are provided that can inhibit sensory (e.g., host targeting) functions in organisms that express ORco receptors such as airborne insects, e.g., mosquitos, and ticks. Methods of employing such agents, and articles incorporating the same, are also provided. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.Type: GrantFiled: August 26, 2020Date of Patent: January 2, 2024Assignee: Vanderbilt UniversityInventors: Laurence J. Zwiebel, Ian M. Romaine, Sam Ochieng, Alex Gregory Waterson, Gary A. Sulikowski
-
Patent number: 11851406Abstract: Described are positive allosteric modulators of muscarinic acetylcholine receptor M1 (mAChR M1), pharmaceutical compositions including the compounds, and methods of using the compounds and compositions for treating neurological disorders, psychiatric disorders, or a combination thereof.Type: GrantFiled: June 13, 2019Date of Patent: December 26, 2023Assignee: Vanderbilt UniversityInventors: Craig W. Lindsley, P. Jeffrey Conn, Darren W. Engers, Julie L. Engers, Aaron M. Bender, Madeline Long
-
Patent number: 11841413Abstract: The present application provides a system and method for using a nuclear magnetic resonance (NMR) system. The method includes performing a pulse sequence using the NMR system that spatially encodes NMR signal evolutions to be acquired from a subject using an aggregated radio-frequency (B1) field incoherence and resolving the NMR signal evolutions acquired from the subject using at least one of a dictionary of known magnetic resonance fingerprinting (MRF) signal evolutions to determine matches in the NMR signal evolutions to the known MRF signal evolutions or an optimization process. The method also includes generating at least two spatially-resolved measurements indicating quantitative tissue parameters of the subject in at least two locations.Type: GrantFiled: December 30, 2020Date of Patent: December 12, 2023Assignees: Case Western Reserve University, Vanderbilt UniversityInventors: Mark A. Griswold, William A. Grissom
-
Publication number: 20230392205Abstract: The present disclosure is directed to the use of left-handed DNA (L-DNA) tracer to identify the source, track the distribution, and validate the integrity of products or resources that are highly regulated, valuable, or hazardous (e.g., pharmaceuticals, treated water, chemicals, designer products, and ammunitions). L-DNA tracers can encrypt unique identifying information, as well as more general information about the type of product, such as the manufacturing location, source, and date, directly into the nucleotide sequence. The L-DNA tracers can embed directly into the product so that it could neither be disassociated from the product nor be re-associated with another product. Because there are no technologies available to sequence L-DNA, the L-DNA tracers cannot be reverse engineered, copied, or falsified. The L-DNA tracers are only deciphered using a unique detection key.Type: ApplicationFiled: May 26, 2023Publication date: December 7, 2023Applicant: Vanderbilt UniversityInventors: Nicholas M. ADAMS, Frederick R. HASELTON
-
Patent number: 11834416Abstract: The present disclosure is directed to a cleavable agent for enhanced magnetic resonance generally corresponding to the formula Y-L-R, wherein Y represents a catalyst-binding moiety having at least one isotopically labeled heteroatom, L represents a cleavable bond, and R represents a hyperpolarized payload having at least one isotopically labeled carbon. Also disclosed herein is a method of cleaving the cleavable agent for enhanced magnetic resonance.Type: GrantFiled: November 27, 2019Date of Patent: December 5, 2023Assignees: Board of Trustees of Southern Illinois University, Vanderbilt UniversityInventors: Boyd M. Goodson, Eduard Y. Chekmenev, Bryce E. Kidd, Jamil A. Mashni, Miranda Limbach, Yuqing Hou, Fan Shi
-
Patent number: 11835609Abstract: Imaging methods for assessing the macromolecular content, such as myelin, are of great interest for understanding brain tissue microstructure, and have shown potentials in diagnosing and prognosing demyelinating diseases. for example. Magnetization transfer (MT) is a MRI contrast mechanism that enables detection of macromolecules. Previously, the MT effect has been analyzed by a semi-quantitative method termed magnetization transfer ratio (MTR) or by a quantitative magnetization transfer (qMT) method. However, because MTR does not have enough sensitivity and specificity to myelin, and qMT takes a very long scan time, their translation into clinical scenarios has been limited. This disclosure describes a MT data analysis metric using double saturation pulse offsets and powers (dopMTR).Type: GrantFiled: November 7, 2022Date of Patent: December 5, 2023Assignee: Vanderbilt UniversityInventor: ZhongLiang Zu
-
Patent number: 11820757Abstract: Disclosed herein are substituted hexahydro-1H-cyclopenta[c]pyrrole compounds, which may be useful as antagonists of the muscarinic acetylcholine receptor M4 (mAChR M4). Also disclosed herein are methods of making the compounds, pharmaceutical compositions comprising the compounds, and methods of treating disorders using the compounds and compositions.Type: GrantFiled: March 7, 2022Date of Patent: November 21, 2023Assignee: Vanderbilt UniversityInventors: Craig W. Lindsley, P. Jeffrey Conn, Darren W. Engers, Julie L. Engers, Kayla J. Temple, Aaron M. Bender, Logan A. Baker
-
Patent number: 11820864Abstract: Disclosed herein are glycidol-based polymers, nanoparticles, and methods related thereto useful for a variety of applications, including, but not limited to, drug delivery. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.Type: GrantFiled: September 28, 2021Date of Patent: November 21, 2023Assignee: Vanderbilt UniversityInventors: Eva M. Harth, Benjamin R. Spears
-
Patent number: 11823807Abstract: A nanotweezer and method of trapping and dynamic manipulation thereby are provided. The nanotweezer comprises a first metastructure including a first substrate, a first electrode, and a plurality of plasmonic nanostructures arranged in an array, and a trapping region laterally displaced from the array; a second metastructure including a second substrate and a second electrode; a microfluidic channel between the first metastructure and the second metastructure; a voltage source configured to selectively apply an electric field between the first electrode and the second electrode; and a light source configured to selectively apply an excitation light to the microfluidic channel at a first location corresponding to the array, thereby to trap a nanoparticle at a second location corresponding to the trapping region.Type: GrantFiled: July 27, 2021Date of Patent: November 21, 2023Assignee: Vanderbilt UniversityInventor: Justus C. Ndukaife
-
Patent number: 11815671Abstract: A 2D spatial differentiator operates in transmission and comprises a Si nanorod photonic crystal that can transform an image, Ein, into its second-order derivative, Eout ? ?2 Ein, allowing for direct discrimination of the edges in the image. The use of a 2D photonic crystal allows for differentiation and edge detection in all directions with a numerical aperture (NA) up to 0.315 and an experimental resolution smaller than 4 ?m. The nanophotonic differentiator is able to be directly integrated into an optical microscope and onto a camera sensor, demonstrating the ease with which it can be vertically integrated into existing imaging systems. Furthermore, integration with a metalens is demonstrated for realizing a compact and monolithic image-processing system. In all cases, the use of the nanophotonic differentiator allows for a significant reduction in size compared to traditional systems, opening new doors for optical analog image processing in applications involving computer vision.Type: GrantFiled: September 4, 2020Date of Patent: November 14, 2023Assignee: Vanderbilt UniversityInventors: Jason G. Valentine, You Zhou, Hanyu Zheng
-
Patent number: 11802146Abstract: This disclosure relates to compositions and methods for treating and preventing chikungunya virus infection by delivering polynucleotides encoding anti-chikungunya virus antibodies to a subject. Compositions and treatments provided herein include one or more polynucleotides having an open reading frame encoding an anti-chikungunya virus antibody heavy chain or fragment thereof and/or an anti-chikungunya virus antibody light chain or fragment thereof. Methods for preparing and using such treatments are also provided.Type: GrantFiled: January 4, 2019Date of Patent: October 31, 2023Assignees: ModernaTX, Inc., Vanderbilt UniversityInventors: Sunny Himansu, James E. Crowe, Jr., Giuseppe Ciaramella
-
Publication number: 20230338744Abstract: A system for modulating operation of an organ in real time by controlling illumination of one or more light components is provided. The system includes an external device comprising a processing unit and a power supply configured to transmit stimulation parameters, a wireless implantable device comprising, a sensor configured to detect, in real time, activity data from a tissue cluster of an organ, a stimulator including a plurality of light components corresponding to at least a first wavelength and a second wavelength and a flexible elastomer coupled to the plurality of light components, and a transceiver configured to transmit the activity data to the external device, wherein the stimulator is configured to illuminate, based on the stimulation parameters, one of the plurality of light components coupled to the flexible elastomer, wherein the processing unit is configured to update the stimulation parameters based on the activity data.Type: ApplicationFiled: June 9, 2021Publication date: October 26, 2023Applicants: University of Cincinnati, Vanderbilt UniversityInventors: Deeptankar DeMazumder, Swati Dey
-
Patent number: 11795510Abstract: The present invention relates to a method of identifying epigenetic reprogramming. Identifying epigenetic reprogramming comprises detecting large organized heterochromatin lysine (K)-9 modified domains (LOCKs) and large DNA hypomethylated blocks in a sample containing DNA from a subject having cancer, for example, PDAC.Type: GrantFiled: October 5, 2017Date of Patent: October 24, 2023Assignees: The Johns Hopkins University, Memorial Sloan Kettering Cancer Center, Vanderbilt UniversityInventors: Oliver McDonald, Xin Li, Christine A. Iacobuzio-Donahue, Andrew P. Feinberg
-
Patent number: 11793394Abstract: A steerable endoscope system includes a continuum manipulator, a plurality of syringes, and a steerable tip. The continuum manipulator includes a plurality of spaced discs and a plurality of backbones each extending through all discs. A bending movement of the continuum manipulator changes a varying linear displacement of each backbone. Each backbone is further coupled to a different one of the syringes such that the linear displacement of each backbone pushes or pulls a piston of the corresponding syringe by a varying amount. The steerable tip includes a plurality of bellows each pneumatically coupled to a different syringe such that movement of the piston of a syringe causes the corresponding bellow to inflate or deflate. Because the distal end of each bellow is fixedly coupled to the same end effector, variations in the amount of inflation or deflation on each bellow causes a bending of the steerable tip.Type: GrantFiled: December 1, 2017Date of Patent: October 24, 2023Assignees: Vanderbilt University, University of LeedsInventors: Nicolo Garbin, Pietro Valdastri, Keith L. Obstein, Nabil Simaan, Piotr Robert Slawinski
-
Patent number: 11788147Abstract: In one aspect provided herein are methods of determining a triple negative breast cancer (TNBC) subtype in an individual in need thereof comprising determining expression of one or more genes in one or more TNBC cells of the individual; and comparing the expression of the one or more genes in the TNBC cells with the expression of the one or more genes in a control. In another aspect, the methods are directed to determining a treatment protocol for the TNBC patient based on the TNBC subtype. In another aspect, the methods are directed to predicting whether an individual will benefit from a treatment for a particular TNBC subtype. In yet another aspect, the invention is directed to a method of determining whether an agent can be used to treat a TNBC subtype.Type: GrantFiled: January 17, 2020Date of Patent: October 17, 2023Assignee: Vanderbilt UniversityInventors: Jennifer A. Pietenpol, Brian Lehmann, Josh Bauer, Xi Chen
-
Patent number: 11771739Abstract: Disclosed are compositions and methods for treating microbial inflammation including its end-stage sepsis and conditions associated with the microbial inflammation such as thrombocytopenia and hypoglycogenemia. In one aspect, the compositions and methods disclosed herein can also be used to enhance clearance of microbes from infected tissues, organs, or systems in a subject. Also disclosed herein are compositions and methods for reducing levels of stress responsible transcription factors and metabolic transcription factors in a cell in a subject with microbial inflammation.Type: GrantFiled: June 18, 2018Date of Patent: October 3, 2023Assignees: Vanderbilt University, The United States As Represented By The Department Of Veterans AffairsInventors: Jack Jacek Hawiger, Jozef Zienkiewicz, Ruth Ann Veach, Yan Liu, Lukasz Wylezinski
-
Publication number: 20230295262Abstract: The disclosure describes engineered cells for the treatment of joint and bone disease. The cells are engineered to sense signals only found in diseased compartments and in turn produce therapeutic molecules that are secreted into the local environment.Type: ApplicationFiled: March 10, 2023Publication date: September 21, 2023Applicants: Vanderbilt University, University of Tennessee Research FoundationInventors: Jonathan M. Brunger, Karen A. Hasty, Bonnie L. Walton, Craig L. Duvall
-
Patent number: 11738004Abstract: Provided are compositions for inhibiting a biological activity of an aldo-keto reductase family 1, member C3 (AKR1C3) polypeptide. In some embodiments, the compositions are indomethacin derivatives that are AKR1C3-specific inhibitors. Also provided are methods for producing disclosed indomethacin derivatives that substantially lack cyclooxygenase inhibitory activity but that have AKR1C3 inhibitory activity, methods for inhibiting AKR1C3 polypeptide biological activities, and methods for treating prostate tumors in subjects.Type: GrantFiled: April 21, 2021Date of Patent: August 29, 2023Assignees: Vanderbilt University, The Trustees of the University of PennsylvaniaInventors: Lawrence J. Marnett, Andy J. Liedtke, Trevor M. Penning, Adegoke O. Adeniji, Michael C. Byrns
-
Patent number: 11726386Abstract: The present disclosure provides for materials (e.g., films, mixtures, and colloidally suspended in solution) including two types of particles (e.g., nanoparticles) that exhibit harmonic surface plasmon resonances (SPR), where these are referred to as harmonically paired set of particles. The present disclosure provides for harmonically paired set of particles, where the particles are separated by a dielectric layer. The dielectric layer has a thickness such that direct electron transfer does not occur between the harmonically paired set of particles. The harmonically paired set of particles can be included in harmonically paired set of particle system or devices which can be a component in measurement systems or devices.Type: GrantFiled: April 2, 2021Date of Patent: August 15, 2023Assignee: Vanderbilt UniversityInventors: Janet E. Macdonald, Richard F. Haglund, Jr., Nathan James Spear, Kent A. Hallman, Summer L. Arrowood, Roderick B. Davidson, II, Emil A. Hernandez-Pagan