Patents Examined by Brandon C Fox
  • Patent number: 11631629
    Abstract: A semiconductor device includes a package and a cooling cover. The package includes a first die having an active surface and a rear surface opposite to the active surface. The rear surface has a cooling region and a peripheral region enclosing the cooling region. The first die includes micro-trenches located in the cooling region of the rear surface. The cooling cover is stacked on the first die. The cooling cover includes a fluid inlet port and a fluid outlet port located over the cooling region and communicated with the micro-trenches.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: April 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Jung Wu, Chih-Hang Tung, Tung-Liang Shao, Sheng-Tsung Hsiao, Jen-Yu Wang
  • Patent number: 11626466
    Abstract: A display device includes a display panel including a substrate including a front display region, a side display region extending from a side of the front display region, and a transmission region including at least a portion overlapping the front display region in a plan view; and a sensor located on a bottom of the substrate, the sensor having at least a portion overlapping the transmission region in a plan view. The display panel includes first pixels in the front display region; a load compensation element in the side display region; and a connection line electrically connecting the first pixels and the load compensation element by detouring the transmission region.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: April 11, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Seung Lyong Bok, Sun Mi Yu
  • Patent number: 11626278
    Abstract: Exemplary methods of semiconductor processing may include providing a boron-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include providing a carbon-containing precursor to the processing region of the semiconductor processing chamber. The carbon-containing precursor may be characterized by a carbon-carbon double bond or a carbon-carbon triple bond. The methods may include thermally reacting the boron-containing precursor and the carbon-containing precursor at a temperature below about 650° C. The methods may include forming a boron-and-carbon-containing layer on the substrate.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: April 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Bo Qi, Zeqing Shen, Abhijit Basu Mallick
  • Patent number: 11621268
    Abstract: A method includes forming a first semiconductor fin over a p-well region of a substrate; forming a second semiconductor fin over an n-well region of a substrate; forming a gate structure crossing the first semiconductor fin and the second semiconductor fin; performing an implantation process to form a source/drain doped region in the first semiconductor fin; etching the second semiconductor fin to form a recess therein; performing a first epitaxy process to grow a first epitaxy layer in the recess; performing a second epitaxy process to grow a second epitaxy layer over the first epitaxy process; etching the second epitaxy layer to round a corner of the second epitaxy layer; forming an interlayer dielectric (ILD) layer covering the first semiconductor fin and the second epitaxy layer, wherein no etching is performed to the first semiconductor fin after forming the gate structure and prior to forming the ILD layer.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: April 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-I Shih, Ren-Hua Guo
  • Patent number: 11615988
    Abstract: FinFET devices and processes to prevent fin or gate collapse (e.g., flopover) in finFET devices are provided. The method includes forming a first set of trenches in a semiconductor material and filling the first set of trenches with insulator material. The method further includes forming a second set of trenches in the semiconductor material, alternating with the first set of trenches that are filled. The second set of trenches form semiconductor structures which have a dimension of fin structures. The method further includes filling the second set of trenches with insulator material. The method further includes recessing the insulator material within the first set of trenches and the second set of trenches to form the fin structures.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 28, 2023
    Assignee: Tessera, LLC
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 11610896
    Abstract: Semiconductor devices are provided. A semiconductor device includes a substrate. The semiconductor device includes a stack structure on the substrate. The stack structure includes a first insulating material and a second insulating material that is on the first insulating material. The semiconductor device includes a spacer that extends from a sidewall of the first insulating material of the stack structure to a portion of a sidewall of the second insulating material of the stack structure. Moreover, the semiconductor device includes a conductive line that is on the spacer. Methods of forming semiconductor devices are also provided.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: March 21, 2023
    Inventors: Daeik Kim, Bong-Soo Kim, Jemin Park, Taejin Park, Yoosang Hwang
  • Patent number: 11605774
    Abstract: Aspects of the subject technology relate to an apparatus including a housing, one or more piezoresistive elements and a magnetic actuator. The housing includes a membrane, and the piezoresistive elements are disposed on the membrane to sense a displacement due to a deflection of the membrane. The magnetic actuator is disposed inside a cavity of the housing. The magnetic actuator exerts a repulsive force onto the membrane to reduce the deflection of the membrane.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: March 14, 2023
    Assignee: Apple Inc.
    Inventors: Majid Khan, Roberto M. Ribeiro, Savas Gider
  • Patent number: 11605730
    Abstract: A self-aligned short-channel SASC electronic device includes a first semiconductor layer formed on a substrate; a first metal layer formed on a first portion of the first semiconductor layer; a first dielectric layer formed on the first metal layer and extended with a dielectric extension on a second portion of the first semiconductor layer that extends from the first portion of the first semiconductor layer, the dielectric extension defining a channel length of a channel in the first semiconductor layer; and a gate electrode formed on the substrate and capacitively coupled with the channel. The dielectric extension is conformally grown on the first semiconductor layer in a self-aligned manner. The channel length is less than about 800 nm, preferably, less than about 200 nm, more preferably, about 135 nm.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: March 14, 2023
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Mark C. Hersam, Vinod K. Sangwan, Megan E. Beck
  • Patent number: 11598022
    Abstract: A vapor phase epitaxy method of growing a III-V layer with a doping that changes from a first conductivity type to a second conductivity type on a surface of a substrate or a preceding layer in a reaction chamber from the vapor phase from an epitaxial gas flow comprising a carrier gas, at least one first precursor for an element from main group III, and at least one second precursor for an element from main group V, wherein when a first growth height is reached, a first initial doping level of the first conductivity type is set by means of a ratio of a first mass flow of the first precursor to a second mass flow of the second precursor, then the first initial doping level is reduced to a second initial doping level of the first or low second conductivity type.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: March 7, 2023
    Assignee: AZUR SPACE Solar Power GmbH
    Inventors: Clemens Waechter, Gregor Keller, Daniel Fuhrmann
  • Patent number: 11600794
    Abstract: A display device is disclosed. In one aspect, the display device includes a flexible substrate capable of being bent in a first direction and an insulating layer including a first opening pattern positioned on the flexible substrate and extending in a second direction crossing the first direction.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 7, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae Woong Kim, Hyun Woo Koo, Young Gug Seol
  • Patent number: 11594673
    Abstract: A memory device includes a first electrode including a spin-orbit material, a magnetic junction on a portion of the first electrode and a first structure including a dielectric on a portion of the first electrode. The first structure has a first sidewall and a second sidewall opposite to the first sidewall. The memory device further includes a second structure on a portion of the first electrode, where the second structure has a sidewall adjacent to the second sidewall of the first structure. The memory device further includes a first conductive interconnect above and coupled with each of the magnetic junction and the second structure and a second conductive interconnect below and coupled with the first electrode, where the second conductive interconnect is laterally distant from the magnetic junction and the second structure.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Noriyuki Sato, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Benjamin Buford, Tofizur Rahman, Rohan Patil, Nafees Kabir, Michael Christenson, Ian Young, Hui Jae Yoo, Christopher Wiegand
  • Patent number: 11587883
    Abstract: A semiconductor device includes an interposer disposed on a substrate. A first major surface of the interposer faces the substrate. A system on a chip is disposed on a second major surface of the interposer. The second major surface of the interposer opposes the first major surface of the interposer. A plurality of first passive devices is disposed in the first major surface of the interposer. A plurality of second passive devices is disposed on the second major surface of the interposer. The second passive devices are different devices than the first passive devices.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: February 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Chieh Hsieh, Hau Tao, Yung-Tien Kuo
  • Patent number: 11587932
    Abstract: A semiconductor device and a method of fabricating a semiconductor device, the device including a substrate; a first conductive pattern on the substrate; a second conductive pattern on the substrate and spaced apart from the first conductive pattern; an air spacer between the first conductive pattern and the second conductive pattern; and a quantum dot pattern covering an upper part of the air spacer.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 21, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byoung Deog Choi, Ji Woon Im
  • Patent number: 11581230
    Abstract: A power semiconductor module includes: at least one semiconductor substrate having a dielectric insulation layer and a first metallization layer attached to the dielectric insulation layer; at least one semiconductor body arranged on the first metallization layer; at least one end stop element arranged either on the semiconductor substrate or on one of the at least one semiconductor body and extending from the semiconductor substrate or the respective semiconductor body in a vertical direction that is perpendicular to a top surface of the semiconductor substrate; and a housing at least partly enclosing the semiconductor substrate, the housing including sidewalls and a cover. The housing further includes at least one press-on pin extending from the cover of the housing towards one of the at least one end stop element, and exerting a pressure on the respective end stop element.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 14, 2023
    Assignee: Infineon Technologies AG
    Inventor: Marco Ludwig
  • Patent number: 11575082
    Abstract: A structure includes an oriented piezoelectric polymer arranged in a circular tubular or circular columnar shape, wherein the orientation angle of the piezoelectric polymer with respect to the central axis of the structure is 15° to 75°, the piezoelectric polymer includes a crystalline polymer having an absolute value of 0.1 to 1000 pC/N for the piezoelectric constant d14 when the orientation axis is the third axis, and the piezoelectric polymer includes a P-body containing a crystalline polymer with a positive piezoelectric constant d14 value and an N-body containing a crystalline polymer with a negative value, wherein for the portion of the central axis of the structure having a length of 1 cm, the value of T1/T2 is 0 to 0.8, T1 being the smaller and T2 being the larger of (ZP+SN) and (SP+ZN), where ZP, SP, ZN, and SN are particularly defined masses.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 7, 2023
    Assignees: TEIJIN LIMITED, KANSAI UNIVERSITY
    Inventors: Yoshiro Tajitsu, Shunsuke Kanematsu, Yuhei Ono
  • Patent number: 11569447
    Abstract: The present invention provides a method for testing performance of thin-film encapsulation. Through different combination designs of film layers, lateral water vapor intrusion paths of various thin films or encapsulation structures are formed, thereby obtaining a means to inspect a lateral water vapor and oxygen barrier capacity of thin films and provide a highly effective inspection means for encapsulation of display panels.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 31, 2023
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Rui Lu, Cunjun Xia
  • Patent number: 11569432
    Abstract: An apparatus comprising a substrate, one or more nanowire pillars, each having a base portion and a tip portion, a first electrode connected to the tip portions of the one or more nanowire pillars, an internal hollow cavity positioned between the substrate and the first electrode, such that at least a portion of each of the one or more nanowire pillars extend through the internal hollow cavity, and a second electrode proximate the first side of the substrate. High-performance broadband photodetectors and other optoelectronics for converting light to electricity with enhanced absorption and carrier collection.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: January 31, 2023
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Haiyang Zou
  • Patent number: 11563078
    Abstract: Ultra-compact inductor devices for use in integrated circuits (e.g., RF ICs) that use 3-dimensional Dirac materials for providing the inductor. Whereas inductors currently require significant real estate on an integrated circuit, because they require use of an electrically conductive winding around an insulative core, or such metal deposited in a spiral geometry, the present devices can be far more compact, occupying significantly less space on an integrated circuit. For example, an ultra-compact inductor that could be included in an integrated circuit may include a 3-dimensional Dirac material formed into a geometric shape capable of inductance (e.g., as simple as a stripe or series of stripes of such material), deposited on a substantially non-conductive (i.e., insulative) substrate, on which the Dirac material in the selected geometric shape is positioned. Low temperature manufacturing methods compatible with CMOS manufacturing are also provided.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 24, 2023
    Assignee: THE UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Berardi Sensale Rodriguez, Ashish Chanana, Steven M Blair, Vikram Deshpande, Michael A Scarpulla, Hugo Orlando Condori, Jeffrey Walling
  • Patent number: 11557624
    Abstract: An image sensor includes: a pixel substrate that includes a plurality of pixels each having a photoelectric conversion unit that generates an electric charge through photoelectric conversion executed on light having entered therein and an output unit that generates a signal based upon the electric charge and outputs the signal; and an arithmetic operation substrate that is laminated on the pixel substrate and includes an operation unit that generates a corrected signal by using a reset signal generated after the electric charge in the output unit is reset and a photoelectric conversion signal generated based upon an electric charge generated in the photoelectric conversion unit and executes an arithmetic operation by using corrected signals each generated in correspondence to one of the pixels.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: January 17, 2023
    Assignee: NIKON CORPORATION
    Inventor: Shigeru Matsumoto
  • Patent number: 11552265
    Abstract: Devices comprising a resistance-switching polymer film are described. Also described are methods of making the devices comprising the resistance-switching polymer film.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Xinke Wang, John Sudijono, Xiao Gong