Patents Examined by George Eckert
  • Patent number: 6867107
    Abstract: A variable capacitance device comprising, in a semiconductor layer formed on a substrate via an buried oxide film: an n? region 132 formed in the shape of a ring and containing an n-type dopant; an anode 133 adjoined to the outer periphery of the n? region 132, the anode 133 being formed in the shape of a ring and containing a p-type dopant; and a cathode 131 adjoined to the inner periphery of the n? region 132, the third region containing an n-type dopant, wherein the dopant concentration in the n? region 132 is lower than that in each of the anode 133 and the cathode 131.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: March 15, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Asai, Teruhito Ohnishi
  • Patent number: 6867506
    Abstract: An apparatus for enclosing logic chips includes a substrate upon which a logic chip is mounted and a mold cap disposed upon the substrate and covering the logic chip. The mold cap includes at least one extension of sufficient size and shape to provide structural support to a corner section of the substrate.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: March 15, 2005
    Assignee: Intel Corporation
    Inventor: Joseph C. Barrett
  • Patent number: 6867448
    Abstract: A method of patterning a metal surface by electro-mechanical polishing is disclosed. A metal surface is placed in fluid communication with an abrasive surface of a pad. The two surfaces are moved relative to each other, in acidic fluid which contains abrasive particles. An electrical circuit is formed between the metal surface and abrasive pad and a current is supplied to the circuit. The patterned surface then is processed into a useful feature such as a bottom electrode for a DRAM capacitor.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: March 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott Meikle
  • Patent number: 6867499
    Abstract: An electronic component and a method for making an electronic component are disclosed. The electronic component has a silicon package. The silicon package has a recess formed thereon in which a conductive region is placed. A bare die electronic device is disposed in the recess. The device has a top, a bottom, sides and a plurality of terminals, including a non-top terminal. The non-top terminal is electrically coupled to the conductive region. The electronic component is constructed by first creating a recess in a silicon wafer to a depth substantially equal to the first dimension of the bare die electronic device. A conductive material is applied to the recess. The electronic device is inserted into the recess so that the bottom terminal is coupled to the conductive material. A dielectric or other planarizing material is applied into the recess. Top and bottom contacts are then applied to form the electronic component so that it may be used as a ball grid array package.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: March 15, 2005
    Assignee: Skyworks Solutions, Inc.
    Inventor: Behnam Tabrizi
  • Patent number: 6867505
    Abstract: A semiconductor device, comprising an electrode on a base surface, a bump formed on the electrode, a pad, and a means of connection. The means of connection comprises a plurality of conductive particles, conducting the bump and the pad with conductive particles bonded between. The base surface is further formed with a barrier rib that separates the conductive particles.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: March 15, 2005
    Assignee: Au Optronics Corp
    Inventors: Chun-Yu Lee, Ping-Chin Cheng
  • Patent number: 6864561
    Abstract: The fixed charge in a borophosphosilicate glass insulating film deposited on a semiconductor device is reduced by reacting an organic precursor such as TEOS with O3. When done at temperatures higher than approximately 480 degrees C., the carbon level in the resulting film appears to be reduced, resulting in a higher threshold voltage for field transistor devices.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: March 8, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ravi Iyer, Randhir P. S. Thakur, Howard E. Rhodes
  • Patent number: 6864583
    Abstract: A wiring layer is covered with a first organic SOG layer, a reinforcement insulating layer consisting of a silicon oxide film or a silicon nitride film formed by means of a plasma CVD method, and a second organic SOG layer, in this order. A via hole is formed in the first organic SOG layer and the reinforcement insulating layer, and a trench is formed in the second organic SOG layer to correspond to the via hole. A conductive via plug and an electrode pad are embedded in the via hole and the trench, respectively. The second SOG layer is covered with a passivation layer in which a through hole is formed to expose the electrode pad. A wire is connected to the exposed electrode pad in the through hole.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 8, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Noriaki Matsunaga, Takamasa Usui, Sachiyo Ito
  • Patent number: 6861758
    Abstract: A method and structure to reduce electromigration failure of semiconductor interconnects. In various embodiments, the area around a via is selectively doped with metallic dopants. The method and resulting structure reduce electromigration failure without adding unnecessary, performance-degrading resistance.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: March 1, 2005
    Assignee: Intel Corporation
    Inventor: Chia-Hong Jan
  • Patent number: 6861764
    Abstract: A wiring board for a semiconductor package comprises a base substrate having first and second surfaces; a wiring layer consisting of necessary wiring patterns formed on at least one of the first and second surfaces; a plurality of semiconductor element mounting areas formed on the surface of the base substrate on which the wiring layer is formed; and individual patterns as position information provided for the respective semiconductor element mounting areas, the individual patterns having a particular shape for the respective semiconductor element mounting area. The individual patterns as position information are formed on peripheral regions of the respective semiconductor element mounting areas.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: March 1, 2005
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yukio Sato, Akihiro Oku, Masayoshi Aoki
  • Patent number: 6858502
    Abstract: A method and a layered heterostructure for forming p-channel field effect transistors is described incorporating a plurality of semiconductor layers on a semiconductor substrate, a composite channel structure of a first epitaxial Ge layer and a second compressively strained SiGe layer having a higher barrier or a deeper confining quantum well and having extremely high hole mobility. The invention overcomes the problem of a limited hole mobility for a p-channel device with only a single compressively strained SiGe channel layer.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: February 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Richard Hammond, Khalid EzzEldin Ismail, Steven John Koester, Patricia May Mooney, John A. Ott
  • Patent number: 6858912
    Abstract: A photodetector circuit incorporates an avalanche photodiode (APD) 300 produced by epitaxy on a CMOS substrate 302 with implanted n-well 304 and p-well 306. The n-well 304 has an implanted p+ guard ring 310 delimiting the APD 300. Within the guard ring 310 is an implanted n+ APD layer 312 upon which is deposited an epitaxial p+ APD layer 314, these layers forming the APD 300. The APD may be incorporated in an amplifier circuit 50 providing feedback to maintain constant bias voltage, and may include an SiGe absorption region to provide extended long wavelength response or lower avalanche voltage. Non-avalanche photodiodes may also be used.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: February 22, 2005
    Assignee: QinetiQ Limited
    Inventors: Gillian F Marshall, David J Robbins, Wang Y Leong, Steven W Birch
  • Patent number: 6858928
    Abstract: An integrated circuit has a metal layer that includes conductors to provide interconnectivity for components of the integrated circuit chip. The metal layer is divided into at least two sections, such that a first section has a preferred direction and the second section has a preferred wiring direction that is different from the first preferred direction. The first and second preferred directions on a single metal layer may consist of any direction. The metal layer may be divided into more than two sections, wherein each section has a preferred wiring direction. Wiring geometries for multi-level metal layers are also disclosed.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: February 22, 2005
    Assignee: Cadence Design Systems, Inc.
    Inventors: Steven Teig, David Overhauser, Akira Fujimura
  • Patent number: 6858941
    Abstract: A multi-chip stack structure and method of fabrication are provided utilizing self-aligning electrical contact arrays. Two or more arrays of interconnection contacts are provided, with one array being a rough aligned contact array, and a second array being a high bandwidth contact array. The rough aligned contact array has larger contacts and at least a portion thereof which melts at a substantially lower temperature than the melting temperature of the contacts of the high bandwidth contact array. By positioning two integrated circuit chips in opposing relation with the arrays mechanically aligned therebetween, and applying heat to melt the contacts of the rough aligned array, the two chips will rotate to align the respective contacts of the high bandwidth contact arrays, thereby achieving improved connection reliability between the structures.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: February 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Thomas George Ference, Wayne John Howell
  • Patent number: 6855990
    Abstract: A multiple-gate semiconductor structure is disclosed which includes a substrate, a fin formed of a semi-conducting material that has a top surface and two sidewall surfaces. The fin is subjected to a strain of at least 0.01% and is positioned vertically on the substrate; source and drain regions formed in the semi-conducting material of the fin; a gate dielectric layer overlying the fin; and a gate electrode wrapping around the fin on the top surface and the two sidewall surfaces of the fin overlying the gate dielectric layer. A method for forming the multiple-gate semiconductor structure is further disclosed.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: February 15, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Yee-Chia Yeo, Fu-Liang Yang, Chenming Hu
  • Patent number: 6856029
    Abstract: An integrated circuit substrate having a first surface for receiving a series of aligned layers during the creation of the integrated circuit, and a second surface disposed substantially opposite the first surface, where the second surface has at least one alignment mark for aligning the series of aligned layers one to another during creation of the integrated circuit. An apparatus for aligning a mask having an image and at least one complimentary alignment mark to a substrate having a first surface and a substantially opposing second surface, where the substrate has at least one alignment mark on the second surface.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: February 15, 2005
    Assignee: LSI Logic Corporation
    Inventors: David W. Daniel, James R. B. Elmer
  • Patent number: 6853021
    Abstract: An oriented ferroelectric thin-film device includes a substrate, a conductive thin-film disposed on the substrate, and a ferroelectric thin-film disposed on the conductive thin-film, wherein the conductive thin-film comprises a polycrystalline conductive material, the ferroelectric thin-film comprises a Pb-containing perovskite oxide and includes a first ferroelectric sub-layer and a second ferroelectric sub-layer, the first ferroelectric sub-layer is disposed on the conductive thin-film and has a composition changing in the thickness direction, and the second ferroelectric sub-layer is disposed on the first ferroelectric sub-layer and has a constant composition. The ferroelectric thin-film is oriented in a uniaxial direction such that the c-axis is perpendicular to the substrate.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: February 8, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Atsushi Sakurai, Tadahiro Minamikawa
  • Patent number: 6853086
    Abstract: A method of manufacture of a semiconductor device comprises a step of providing an adhesive (30) between a semiconductor chip (20) and a substrate (10), a step of positioning electrodes (22) and leads (12) to oppose each other, and a step of applying pressure in the direction of making the gap between the semiconductor chip (20) and substrate (10) narrower, and on the substrate (10), in a region opposing the surface of the semiconductor chip (20) and avoiding the leads (12), a film (14) is formed with lower adhesion with the adhesive (30) than the substrate (10).
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: February 8, 2005
    Assignee: Seiko Epson Corporation
    Inventor: Toshiyuki Nakayama
  • Patent number: 6853025
    Abstract: A trench capacitor with improved strap is disclosed. The strap is located above the top surface of the capacitor. The top surface of the trench capacitor which is formed by the top surfaces of the collar and storage plate, is planar. By locating the strap on a planar surface, the divot present in conventional strap processes is avoided. This results in improved strap reliability and device performance.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 8, 2005
    Assignee: Infineon Technologies Aktiengesellschaft
    Inventors: Helmut Tews, Jochen Beintner, Stephan Kudelka
  • Patent number: 6847094
    Abstract: The forming of a contact with a deep region of a first conductivity type formed in a silicon substrate. The contact includes a doped silicon well region of the first conductivity type and an intermediary region connected between the deep layer and the well. This intermediary connection region is located under a trench. The manufacturing method enables forming of vertical devices, in particular fast bipolar transistors.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 25, 2005
    Assignee: STMicroelectronics S.A.
    Inventor: Thierry Schwartzmann
  • Patent number: 6847101
    Abstract: A microelectronic assembly includes a microelectronic element having a first surface with a plurality of contacts accessible at the first surface, and a compliant layer over the first surface of the microelectronic element, the compliant layer including a plurality of bumped protrusions and openings adjacent the bumped protrusions for providing access to the contacts, wherein each bumped protrusion includes a top surface and at least one sloping edge. The microelectronic assembly also includes conductive terminals over the top surfaces of the bumped protrusions, and a plurality of conductive bond ribbons having first ends in engagement with the contacts, second ends in engagement with the terminals and intermediate sections extending along the sloping edges for electrically interconnecting the contacts and the terminals.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: January 25, 2005
    Assignee: Tessera, Inc.
    Inventors: Joseph Fjelstad, Konstantine Karavakis