Patents Examined by Michael Lulis
  • Patent number: 7888251
    Abstract: Apparatus and method are provided for hydrogenating semiconductor or other materials by ultraviolet (UV) radiation in the presence of hydrogen. Hydrogen uptake may be optimized by selection of temperature and wavelength of the UV radiation. Patterned areas may be selectively hydrogenated, such as mesas in Avalanche Photodiode Arrays.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 15, 2011
    Assignee: Amethyst Research, Inc.
    Inventors: Terry D. Golding, Ronald Paul Hellmer
  • Patent number: 7888218
    Abstract: The present invention pertains to a system method of forming at least a portion of a dual bit memory core array upon a semiconductor substrate, the method comprising forming adjacent first memory cell process assemblies; comprising a charge trapping dielectric, a first polysilicon layer and defining a first bitline opening there between, forming first polysilicon layer features over the charge trapping dielectric layer, depositing a layer of second spacer material over the charge trapping dielectric and the first polysilicon layer features, forming a sidewall spacer adjacent to the charge trapping dielectric and the first polysilicon layer features to define a second bitline opening between the adjacent memory cells, performing a bitline implant, or pocket implants, or both into the bitline opening to establish buried bitlines within the substrate having respective bitline widths that are narrower than the respective widths of the first bitline openings, removing the sidewall spacers, and performing back end
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 15, 2011
    Assignee: Spansion LLC
    Inventors: Zhizheng Liu, Shankar Sinha, Timothy Thurgate, Ming-Sang Kwan
  • Patent number: 7889533
    Abstract: A semiconductor device using a magnetic domain wall movement and a method of manufacturing the semiconductor device are provided. The semiconductor device includes a magnetic layer that is formed on a substrate and has a plurality of magnetic domains, and a unit that supplies energy to move a magnetic domain wall in the magnetic layer. The magnetic layer is formed parallel to the substrate, and includes a plurality of prominences and a plurality of depressions alternately formed along a lengthwise direction thereof. The magnetic layer has a stepped form that secures a reliable movement of the magnetic domain wall in units of one bit.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-jun Hwang, Sung-chul Lee
  • Patent number: 7884450
    Abstract: A process for growth of boron-based nanostructures, such as nanotubes and nanowires, with a controlled diameter and with controlled chemical (such as composition, doping) as well as physical (such as electrical and superconducting) properties is described. The boron nanostructures are grown on a metal-substituted MCM-41 template with pores having a uniform pore diameter of less than approximately 4 nm, and can be doped with a Group Ia or Group IIa electron donor element during or after growth of the nanostructure. Preliminary data based on magnetic susceptibility measurements suggest that Mg-doped boron nanotubes have a superconducting transition temperature on the order of 100 K.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 8, 2011
    Assignee: Yale University
    Inventors: Lisa Pfefferle, Dragos Ciuparu
  • Patent number: 7884404
    Abstract: A ferroelectric memory device includes a field effect transistor formed over a semiconductor substrate and including first and second diffusion regions, an interlayer insulation film formed over the semiconductor substrate so as to cover the field effect transistor, a conductive plug formed in the interlayer insulation film in contact with the first diffusion region, and a ferroelectric capacitor formed over the interlayer insulation in contact with the conductive plug. The ferroelectric capacitor includes a ferroelectric film and upper and lower electrodes sandwiching the ferroelectric film respectively from above and below.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: February 8, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 7883972
    Abstract: A semiconductor device may include a fin structure having source/drain regions and channel fins connected between source/drain patterns. A gate insulation layer may be provided on the channel fins. A gate electrode may include lower gate patterns and an upper gate pattern. The lower gate patterns may extend in a vertical direction and contact the gate insulation layer. The upper gate pattern may extend in a second horizontal direction substantially perpendicular to the first horizontal direction. The upper gate pattern may be connected to upper portions of the lower gate patterns.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Man Yoon, Choong-Ho Lee, Chul Lee, Dong-Gun Park
  • Patent number: 7883964
    Abstract: A nonvolatile semiconductor memory includes: a device region and a device isolating region, which have a pattern with a striped form that extends in a first direction, and are alternately and sequentially disposed at a first pitch in a second direction that is perpendicular to the first direction; and a contact made of a first conductive material, which is connected to the device region and disposed at the first pitch in the second direction. On a cross section of the second direction, the bottom width of the contact is longer than the top width of the contact, and the bottom width is longer than the width of the device region.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Goda, Hiroyuki Nitta
  • Patent number: 7880249
    Abstract: Methods are presented for fabricating an MTJ element having a precisely controlled spacing between its free layer and a bit line and, in addition, having a protective spacer layer formed abutting the lateral sides of the MTJ element to eliminate leakage currents between MTJ layers and the bit line. Each method forms a dielectric spacer layer on the lateral sides of the MTJ element and, depending on the method, includes an additional layer that protects the spacer layer during etching processes used to form a Cu damascene bit line. At various stages in the process, a dielectric layer is also formed to act as a CMP stop layer so that the capping layer on the MTJ element is not thinned by the CMP process that planarizes the surrounding insulation. Subsequent to planarization, the stop layer is removed by an anisotropic etch of such precision that the MTJ element capping layer is not thinned and serves to maintain an exact spacing between the bit line and the MTJ free layer.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 1, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Jun Yuan, Liubo Hong, Mao-Min Chen
  • Patent number: 7868322
    Abstract: Disclosed is a method for fabricating an organic thin film transistor by oxidation and selective reduction of an organic semiconductor material. According to the method, stability of interfaces between a semiconductor layer and source/drain electrodes of an organic thin film transistor may be guaranteed. Therefore, an organic thin film transistor fabricated by the method may exhibit improved performance characteristics, e.g., minimized or decreased contact resistance and increased charge carrier mobility.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: January 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Do Hwan Kim, Jung Seok Hahn, Sang Yoon Lee, Bon Won Koo
  • Patent number: 7858978
    Abstract: A nonvolatile organic bistable memory device includes a substrate, a lower electrode disposed on the substrate, a lower charge injection layer disposed on the lower electrode, an insulating polymer layer including nanoparticles disposed on the lower charge injection layer, an upper charge injection layer disposed on the insulating polymer layer, and an upper electrode disposed on the upper charge injection layer. The lower and upper charge injection layers each include fullerenes and/or carbon nanotubes.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: December 28, 2010
    Assignees: Samsung Electronics Co., Ltd., Industry-University Cooperation Foundation
    Inventors: Tae-Whan Kim, Fushan Li, Young-Ho Kim, Jae-Hun Jung
  • Patent number: 7843026
    Abstract: A composite material with at least one of a negative effective permittivity and a negative effective permeability for incident radiation of at least one wavelength is described. The composite material comprises conductive structures that are substantially random with respect to at least one of size, shape, orientation, and location.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: November 30, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Alexandre Bratkovski
  • Patent number: 7829886
    Abstract: A nonvolatile carbon nanotube memory device using multiwall carbon nanotubes and methods of operating and fabricating the same are provided. The nonvolatile memory device may include a substrate, at least one first electrode on the substrate, first and second vertical walls on the at least one first electrode spaced from each other, a multiwall carbon nanotube on the at least one first electrode between the first and second vertical walls, second and third electrodes on the first and second vertical walls respectively and at least one fourth electrode spaced a variable distance D (where D?0) from the multiwall carbon nanotubes.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: November 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Leonid Maslov, Jin-Gyoo Yoo, Cheol-Soon Kim
  • Patent number: 7829938
    Abstract: Non-volatile memory devices and arrays are described that utilize dual gate (or back-side gate) non-volatile memory cells with band engineered gate-stacks that are placed above or below the channel region in front-side or back-side charge trapping gate-stack configurations in NAND memory array architectures. The band-gap engineered gate-stacks with asymmetric or direct tunnel barriers of the floating node memory cells of embodiments of the present invention allow for low voltage tunneling programming and efficient erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The memory cell architecture also allows for improved high density memory devices or arrays with the utilization of reduced feature word lines and vertical select gates.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: November 9, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7811883
    Abstract: A non-volatile memory transistor with a nanocrystal-containing floating gate formed by nanowires is disclosed. The nanocrystals are formed by the growth of short nanowires over a crystalline program oxide. As a result, the nanocrystals are single-crystals of uniform size and single-crystal orientation.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 12, 2010
    Assignee: International Business Machines Corporation
    Inventor: Guy M. Cohen
  • Patent number: 7800227
    Abstract: In a semiconductor device including a multilayer pad, the multilayer pad comprises a first pad layer provided over a semiconductor substrate to have a first copper wiring region and a first intralayer insulating region provided within the first copper wiring region, and a second pad layer provided over the first pad layer via an interlayer insulating film to have a second copper wiring region and a second intralayer insulating region provided within the second copper wiring region. In the semiconductor device, the first copper wiring region, the first intralayer insulating region, the second copper wiring region, and the second intralayer insulating region are provided in the first and second pad layers such that the multilayer pad has a layout in which all the regions are covered with the copper wiring when the multilayer pad is perspectively viewed from a perpendicularly upper direction for the semiconductor substrate.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: September 21, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Masamichi Kamiyama, Masashi Takase, Takanori Watanabe
  • Patent number: 7781764
    Abstract: A nanometric device is disclosed for the measurement of the electrical conductivity of individual molecules and their quantum effects having: a substrate surmounted by, in order, a barrier to diffusion layer, an electrically conductive layer, a “bounder” layer and an electrically insulating layer; and a suitable miniaturized probe; wherein the “bounder” layer and the electrically insulating layer have at least one nanometric pore formed within, the base of which consists of the electrically conductive layer. A method for the production of a nanometric device for the measurement of the electrical conductivity of individual molecules and their quantum effects, and a method for the measurement of the electrical conductivity and quantum effects of a molecule of interest, are also disclosed.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: August 24, 2010
    Assignee: Consiglio Nazionale delle Ricerche
    Inventors: Sebania Libertino, Rosaria Anna Puglisi, Manuela Fichera, Salvatore Antonino Lombardo, Rosario Corrado Spinella
  • Patent number: 7776643
    Abstract: A solid state image pickup device is provided which includes: charge accumulation regions disposed in a semiconductor substrate in a matrix shape; a plurality of vertical transfer channels formed in the semiconductor substrate each in a close proximity to each column of the charge accumulation regions; vertical transfer electrodes formed above the vertical transfer channels; a channel protective impurity layer formed just under the vertical transfer channel and surrounding the charge accumulation region; one or more pixel separation impurity layers formed under the channel protective impurity layer and at a position facing the channel protective impurity layer; an overflow barrier region having a peak position of an impurity concentration at a position deeper than the pixel separation impurity layer, the peak position of the impurity concentration being at a depth of 3 ?m or deeper from a surface of the semiconductor substrate; and a horizontal CCD for transferring signal charges transferred from the vertical
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 17, 2010
    Assignee: Fujifilm Corporation
    Inventors: Yuko Nomura, Shinji Uya
  • Patent number: 7772072
    Abstract: A non-volatile memory located on a substrate is provided. The non-volatile memory includes a tunnel layer, a charge trapping composite layer, a gate and a source/drain region. The tunnel layer is located on the substrate, the charge trapping composite layer is located on the tunnel layer and the gate is located over the charge trapping composite layer. The source/drain region is located in the substrate on both sides of the tunnel layer. With the charge trapping composite layer, the non-volatile memory has relatively better programming and erasing performance and higher data retention ability. Furthermore, since there is no need to perform a thermal process in the formation of the charge trapping composite layer, thermal budget of the manufacturing process is low.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: August 10, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Szu-Yu Wang, Hang-Ting Lue
  • Patent number: 7772663
    Abstract: In one embodiment, the invention is a method and apparatus for bitline and contact via integration in magnetic random access memory arrays. One embodiment of a magnetic random access memory according to the present invention includes a magnetic tunnel junction and a top wire that surrounds the magnetic tunnel junction on at least three sides.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Sivananda Kanakasabapathy, Michael C. Gaidis
  • Patent number: 7750341
    Abstract: An electrically bistable body for use in electronic devices wherein the bistable body is converted from a low conductivity state to a high conductivity state. The bistable body includes a polymer matrix in which a sufficient amount of capped nanoparticles are dispersed so that the bistable body is converted from a low conductivity state to a high conductivity state upon application of an electrical field. The capped nanoparticles are metal nanoparticles that have been coated with an aromatic thiol.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: July 6, 2010
    Assignee: The Regents of the University of California
    Inventors: Yang Yang, Jianyong Ouyang