Patents Examined by Mohammed R Alam
  • Patent number: 11652169
    Abstract: Disclosed is a semiconductor device and a manufacturing method, comprising: forming a pad oxide layer and a silicon nitride layer on a substrate; etching the silicon nitride layer into a plurality of segments; forming an oxide layer, having an up-and-down wave shape, by performing a traditional thermal growth field oxygen method on the semiconductor device by use of the plurality of segments serving as forming-assisted structures; performing traditional processes on the semiconductor device having an up-and-down wavy semiconductor surface, to form a gate oxide layer, a polysilicon layer, and to form a source region and a drain region by implantation The semiconductor device having an up-and-down wavy channel region may be formed by a traditional thermal growth field oxygen method, thus the manufacturing processes are simple, the cost is low, and the completed device may have a larger effective channel width and a lower on-state resistance.
    Type: Grant
    Filed: May 9, 2021
    Date of Patent: May 16, 2023
    Assignee: JOULWATT TECHNOLOGY CO., LTD.
    Inventor: Guangtao Han
  • Patent number: 11647624
    Abstract: An apparatus includes: a substrate; a plurality of pillar-shaped bottom electrodes provided over the substrate; and an upper electrode covering side and top surfaces of the pillar-shaped bottom electrodes with an intervening capacitor insulating film therebetween; wherein the pillar-shaped bottom electrodes have at least an upper portion and a lower portion, and the diameter of the upper portion is smaller than the diameter of the lower portion.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: May 9, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Akira Kaneko, Keisuke Otsuka
  • Patent number: 11637147
    Abstract: An imaging device including: a semiconductor substrate including a pixel region and a peripheral region; an insulating layer that covers the pixel and peripheral regions; first electrodes located on the insulating layer above the pixel region; a photoelectric conversion layer that covers the first electrodes; a second electrode that covers the photoelectric conversion layer; detection circuitry configured to be electrically connected to the first electrodes; peripheral circuitry configured to be electrically connected to the detection circuitry, and including analog circuitry; and a third electrode electrically connected to the second electrode.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: April 25, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shunsuke Isono, Hidenari Kanehara, Sanshiro Shishido, Takeyoshi Tokuhara
  • Patent number: 11637107
    Abstract: Bit line stacks and methods of forming bit line stacks are described herein. A bit line stack comprises: a polysilicon layer; an adhesion layer on the polysilicon layer; a barrier metal layer on the adhesion layer; an interface layer on the barrier metal layer; a resistance reducing layer on the interface layer; and a conductive layer on the resistance reducing layer. A bit line stack having the resistance reducing layer has a resistance at least 5% lower than a comparable bit line stack without the resistance reducing layer. The resistance reducing layer may include silicon oxide or silicon nitride. The resistance reducing layer may be formed using one or more of a physical vapor deposition (PVD), a radio frequency-PVD, a pulsed-PVD, chemical vapor deposition (CVD), atomic layer deposition (ALD) or sputtering process.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: April 25, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tom Ho Wing Yu, Nobuyuki Sasaki, Jianxin Lei, Wenting Hou, Rongjun Wang, Tza-Jing Gung
  • Patent number: 11626410
    Abstract: Bit line stacks and methods of forming bit line stacks are described herein. A bit line stack comprises: a polysilicon layer; an adhesion layer on the polysilicon layer; a barrier metal layer on the adhesion layer; an interface layer on the barrier metal layer; a resistance reducing layer on the interface layer; and a conductive layer on the resistance reducing layer. A bit line stack having the resistance reducing layer has a resistance at least 5% lower than a comparable bit line stack without the resistance reducing layer. The resistance reducing layer may include silicon oxide or silicon nitride. The resistance reducing layer may be formed using one or more of a physical vapor deposition (PVD), a radio frequency-PVD, a pulsed-PVD, chemical vapor deposition (CVD), atomic layer deposition (ALD) or sputtering process.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: April 11, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tom Ho Wing Yu, Nobuyuki Sasaki, Jianxin Lei, Wenting Hou, Rongjun Wang, Tza-Jing Gung
  • Patent number: 11626288
    Abstract: Methods for reducing interface resistance of semiconductor devices leverage dual work function metal silicide. In some embodiments, a method may comprise selectively depositing a metal silicide layer on an Epi surface and adjusting a metal-to-silicon ratio of the metal silicide layer during deposition to alter a work function of the metal silicide layer based on whether the Epi surface is a P type Epi surface or an N type Epi surface to achieve a Schottky barrier height of less than 0.5 eV. The work function for a P type Epi surface may be adjusted to a value of approximately 5.0 eV and the work function for an N type Epi surface may be adjusted to a value of approximately 3.8 eV. The deposition of the metal silicide layer on the Epi surface may be performed prior to deposition of a contact etch stop layer and an activation anneal.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: April 11, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Raymond Hung, Mehul Naik, Michael Haverty
  • Patent number: 11616134
    Abstract: A method for manufacturing a Laterally Diffused Metal Oxide Semiconductor (LDMOS) transistor with implant alignment spacers includes etching a gate stack comprising a first nitride layer. The first nitride layer is on a silicon layer. The gate stack is separated from a substrate by a first oxide layer. The gate stack is oxidized to form a polysilicon layer from the silicon layer, and to form a second oxide layer on a sidewall of the polysilicon layer. A drain region of the LDMOS transistor is implanted with a first implant aligned to a first edge formed by the second oxide layer. A second nitride layer is formed conformingly covering the second oxide layer. A nitride etch-stop layer is formed conformingly covering the second nitride layer.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: March 28, 2023
    Assignee: NXP USA, Inc.
    Inventors: Hernan Rueda, Rodney Arlan Barksdale, Stephen C Chew, Martin Garcia, Wayne Geoffrey Risner
  • Patent number: 11610891
    Abstract: A semiconductor device may include a bottom sub-electrode on a substrate, a top sub-electrode on the bottom sub-electrode, a dielectric layer covering the bottom and top sub-electrodes, and a plate electrode on the dielectric layer. The top sub-electrode may include a step extending from a side surface thereof, which is adjacent to the bottom sub-electrode, to an inner portion of the top sub-electrode. The top sub-electrode may include a lower portion at a level that is lower than the step and an upper portion at a level which is higher than the step. A maximum width of the lower portion may be narrower than a minimum width of the upper portion. The maximum width of the lower portion may be narrower than a width of a top end of the bottom sub-electrode. The bottom sub-electrode may include a recess in a region adjacent to the top sub-electrode.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: March 21, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaehwan Cho, Junghwan Oh, Sangho Lee, Junwon Lee, Jinwoo Bae, Sunghee Han, Yoosang Hwang
  • Patent number: 11610919
    Abstract: A display device may include a substrate, a buffer layer on the substrate, a first active pattern on the buffer layer, the first active pattern having a first thickness, a second active pattern on the buffer layer spaced from the first active pattern and having a second thickness smaller than the first thickness, a first gate insulating layer on the first active pattern and the second active pattern, a first gate electrode on the first gate insulating layer, the first gate electrode overlapping the first active pattern, and a second gate electrode on the first gate insulating layer, the second gate electrode overlapping the second active pattern.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: March 21, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jonghoon Choi, Jongoh Seo, Ji-Hwan Kim, Jongjun Baek, Byung Soo So
  • Patent number: 11605731
    Abstract: The present invention relates to an epitaxial structure of N-face group III nitride, its active device, and its gate protection device. The epitaxial structure of N-face AlGaN/GaN comprises a silicon substrate, a buffer layer (C-doped) on the silicon substrate, an i-GaN (C-doped) layer on the buffer layer (C-doped), an i-AlyGaN buffer layer on the i-GaN (C-doped) layer, an i-GaN channel layer on the i-AlyGaN buffer layer, and an i-AlxGaN layer on the i-GaN channel layer, where x=0.1˜0.3 and y=0.05˜0.75. By connecting a depletion-mode (D-mode) AlGaN/GaN high electron mobility transistor (HEMT) to the gate of a p-GaN gate enhancement-mode (E-mode) AlGaN/GaN HEMT in device design, the gate of the p-GaN gate E-mode AlGaN/GaN HEMT can be protected under any gate voltage.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: March 14, 2023
    Inventor: Chih-Shu Huang
  • Patent number: 11600710
    Abstract: Disclosed is a semiconductor device for improving a gate induced drain leakage and a method for fabricating the same, and the semiconductor device includes a substrate, a first doped region and a second doped region formed to be spaced apart from each other by a trench in the substrate, a first gate dielectric layer over the trench, a lower gate over the first gate dielectric layer, an upper gate over the lower gate and having a smaller width than the lower gate, and a second gate dielectric layer between the upper gate and the first gate dielectric layer.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: March 7, 2023
    Assignee: SK hynix Inc.
    Inventor: Dong-Soo Kim
  • Patent number: 11600725
    Abstract: A semiconductor power device having shielded gate structure in an active area and trench field plate termination surrounding the active area is disclosed. A Zener diode connected between drain metal and source metal or gate metal for functioning as a SD or GD clamp diode. Trench field plate termination surrounding active area wherein only cell array located will not cause BV degradation when SD or GD poly clamped diode integrated.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: March 7, 2023
    Assignee: NAMI MOS CO., LTD.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 11594660
    Abstract: A semiconductor device package includes a carrier, an emitting element and a first package body. The carrier includes a first surface and a second surface opposite to the first surface. The emitting element is disposed on the first surface of the carrier. The first package body is disposed over the first surface of the carrier and spaced apart from the first surface of the carrier.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 28, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Tang-Yuan Chen, Meng-Wei Hsieh, Cheng-Yuan Kung
  • Patent number: 11579524
    Abstract: An imprinting platform including a noble metal catalyst, a semiconductor substrate, and a pre-patterned polymer stamp, where the catalyst is attached to the stamp, and related methods and articles.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: February 14, 2023
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Keng Hsu, Placid Ferreira, Bruno Azeredo
  • Patent number: 11574908
    Abstract: A memory device includes a memory cell, a writing transistor, and a reading transistor. The memory cell includes a semiconductor substrate, a tunneling layer, a storage layer, a first electrode, a second electrode, and a third electrode. The tunneling layer is over the semiconductor substrate. The storage layer is on the tunneling layer. The first electrode is on the storage layer. The second electrode is on the tunneling layer. The storage layer has a sidewall facing the second electrode. The third electrode is spaced apart from the second electrode. The writing transistor is electrically connected to the first electrode of the memory cell. The reading transistor is electrically connected to the second electrode of the memory cell.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: February 7, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Jenn-Gwo Hwu, Bo-Jyun Chen, Kuan-Wun Lin
  • Patent number: 11569378
    Abstract: A semiconductor device includes a first semiconductor structure. The first semiconductor structure includes a first semiconductor material having a band-gap. The first semiconductor structure has a first surface. An insulating layer has first and second opposing surfaces. The first surface of the insulating layer is on the first surface of the first semiconductor structure. A second semiconductor structure is on the second surface of the insulating layer and includes a second semiconductor material having a band-gap that is smaller than the band-gap of the first semiconductor material. A floating electrode couples the first semiconductor structure to the second semiconductor structure.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 31, 2023
    Assignee: Texas Instruments Incorporated
    Inventor: Christopher Boguslaw Kocon
  • Patent number: 11569359
    Abstract: A semiconductor device includes a barrier layer, a dielectric layer, a first protection layer, a first spacer, and a gate. The dielectric layer is disposed on the barrier layer. The first protection layer is disposed on the barrier layer, in which the first protection layer extends from a first sidewall of the dielectric layer to a top surface of the barrier layer. The first spacer is disposed on and received by the first protection layer, in which a top end of the first protection layer comprises a first curved surface between the first spacer and the dielectric layer. The gate is disposed on the barrier layer, the dielectric layer, and the first spacer. The gate extends from a top surface of the dielectric layer and at least along the first curved surface of the first protection layer to make contact with the top surface of the barrier layer.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 31, 2023
    Assignee: INNOSCIENCE (ZHUHAI) TECHNOLOGY CO., LTD.
    Inventor: King Yuen Wong
  • Patent number: 11569358
    Abstract: A semiconductor device includes a barrier layer, a dielectric layer, a first spacer, a second spacer, and a gate. The dielectric layer is disposed on the barrier layer and defines a first recess. The first spacer is disposed on the barrier layer and within the first recess. The second spacer is disposed on the barrier layer and within the first recess. The first and second spacers are spaced apart from each other by a top surface of a portion of the barrier layer. The top surface of the portion of the barrier layer is recessed. The gate is disposed on the barrier layer, the dielectric layer, and the first and second spacers, in which the gate has a bottom portion located between the first and second spacers and making contact with the top surface of the portion of the barrier layer.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 31, 2023
    Assignee: INNOSCIENCE (ZHUHAI) TECHNOLOGY CO., LTD.
    Inventor: King Yuen Wong
  • Patent number: 11563100
    Abstract: Embodiments of the present disclosure provide a thin film transistor, a method for manufacturing a thin film transistor, an array substrate, a display panel, and a display device. The thin film transistor includes: a base substrate; an active layer, an insulating layer, and a source-drain layer sequentially stacked on the base substrate, wherein the source-drain layer is electrically connected to the active layer through a via hole penetrating the insulating layer; and a transition layer arranged between the source-drain layer and the active layer at a position of the via hole, wherein the transition layer covers a bottom of the via hole and covers at least part of a sidewall of the via hole, and the transition layer comprises elements of the active layer and elements of a part of the source-drain layer, the part of the source-drain layer being in contact with the transition layer.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: January 24, 2023
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Zheng Bao, Gong Chen, Yanxia Xin, Hongwei Hu, Yihao Wu, Yiyang Zhang, Guangzhou Zhao
  • Patent number: 11557611
    Abstract: Disclosed are a method and a device for manufacturing an array substrate, and an array substrate. The method includes: depositing and forming a gate insulation layer on a pre-formed base substrate and a pre-formed gate, the gate insulation layer covering the pre-formed gate; depositing and forming an amorphous silicon layer, a doped amorphous silicon layer including at least three doped layers, and a metal layer on the gate insulation layer in sequence, doping concentrations of the at least three doped layers of the doped amorphous silicon layer increasing from bottom to top; etching patterns of the amorphous silicon layer, the doped amorphous silicon layer and the metal layer to form the array substrate.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: January 17, 2023
    Assignee: HKC CORPORATION LIMITED
    Inventors: Qionghua Mo, En-tsung Cho