Patents Examined by Moin Rahman
  • Patent number: 9659882
    Abstract: A system, method and apparatus for making a semiconductor die includes forming multiple semiconductor devices in a respective portion of a semiconductor wafer. An electrical interconnect structure is formed over the semiconductor devices and provide electrical connections to the semiconductor devices. The electrical interconnect structure including one or more metallization layers. Each of the metallization layers includes conductive lines. At least one portion of at least one of the metallization layers includes a density of the conductive lines that varies as compared to the other portions of the metallization layers. At least one support structure is formed in the electrical interconnect structure. The semiconductor wafer can be a thinned semiconductor wafer.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: May 23, 2017
    Assignee: SanDisk Technologies LLC
    Inventor: Manuel A. d'Abreu
  • Patent number: 9643926
    Abstract: A method of forming a structure having selectively placed carbon nanotubes, a method of making charged carbon nanotubes, a bi-functional precursor, and a structure having a high density carbon nanotube layer with minimal bundling. Carbon nanotubes are selectively placed on a substrate having two regions. The first region has an isoelectric point exceeding the second region's isoelectric point. The substrate is immersed in a solution of a bi-functional precursor having anchoring and charged ends. The anchoring end bonds to the first region to form a self-assembled monolayer having a charged end. The substrate with charged monolayer is immersed in a solution of carbon nanotubes having an opposite charge to form a carbon nanotube layer on the self-assembled monolayer. The charged carbon nanotubes are made by functionalization or coating with an ionic surfactant.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 9, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Hongsik Park, George S. Tulevski
  • Patent number: 9647105
    Abstract: A semiconductor device includes: a substrate; nitride semiconductor layers disposed over the substrate; a source electrode and a drain electrode disposed over the nitride semiconductor layers; a first insulating layer disposed over the nitride semiconductor layers, the source electrode and the drain electrode; a second insulating layer disposed over the first insulating layer; a first opening disposed in the second insulating layer and the first insulating layer and between the source electrode and the drain electrode, a portion of the nitride semiconductor layer being exposed in the first opening; a second opening disposed in the second insulating layer and between the source electrode and the drain electrode, a portion of the first insulating layer being exposed in the second opening; and a gate electrode disposed over the second insulating layer to bury the first opening and at least a portion of the second opening.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 9, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Naoko Kurahashi
  • Patent number: 9646850
    Abstract: A method of treating a semiconductor device is provided including the steps of loading the semiconductor device in a processing chamber, pressurizing the processing chamber by supplying a processing gas from a pressure chamber to the processing chamber, performing a thermal anneal of the semiconductor device in the processing chamber, and depressurizing the processing chamber by supplying the processing gas from the processing chamber to the pressure chamber.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: May 9, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Wieland Pethe, Dirk Noack, Bernd Kallauch
  • Patent number: 9634121
    Abstract: A method of manufacturing a display panel having a plurality of lightly doped drain thin film transistors arranged as a matrix includes forming a semiconductor pattern with a predetermined shape on a substrate; forming a dielectric layer covering the semiconductor pattern on the substrate; forming a metal layer on the dielectric layer; forming a photoresist patterns smaller than the semiconductor pattern on the metal layer above the semiconductor pattern; etching the metal layer to form a gate electrode smaller than the photoresist pattern; doping high concentration ions by using the photoresist pattern as a mask to form a pair of highly doped regions on the semiconductor pattern not covered by the photoresist pattern; removing the photoresist pattern; and doping low concentration ions by using the gate electrode as a mask to form a pair of lightly doped regions between the highly doped regions and a part of the semiconductor pattern.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: April 25, 2017
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD
    Inventor: Tianming Dai
  • Patent number: 9627488
    Abstract: A method for manufacturing a silicon carbide semiconductor device includes the following steps. A silicon carbide substrate is prepared. A first heating step of heating the silicon carbide substrate in an atmosphere of oxygen is performed. A second heating step of heating the silicon carbide substrate to a temperature of 1300° C. or more and 1500° C. or less in an atmosphere of gas containing nitrogen atoms or phosphorus atoms is performed after the first heating step. A third heating step of heating the silicon carbide substrate in an atmosphere of a first inert gas is performed after the second heating step. Thus, the silicon carbide semiconductor device in which threshold voltage variation is small, and a method for manufacturing the same can be provided.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: April 18, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Kosuke Uchida, Takeyoshi Masuda
  • Patent number: 9613879
    Abstract: In one embodiment, a complementary metal-oxide-semiconductor (CMOS) logic device formed with single-walled carbon nanotubes (SWCNTs) includes: at least one p-type metal-oxide-semiconductor (PMOS) thin-film transistor (TFT) formed with the SWCNTs, and at least one n-type metal-oxide-semiconductor (NMOS) TFT formed with the SWCNTs, where each of the at least one PMOS TFT and the at least one NMOS TFT has a gate, a source and a drain. The gate of each of the at least one PMOS TFT and the gate of each of the at least one NMOS TFT is configured to alternatively receive at least one input voltage, and respectively includes a local metallic gate structure formed of a metal. At least one of the drain of the at least one PMOS TFT and the drain of the at least one NMOS TFT is configured to output an output voltage VOUT.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: April 4, 2017
    Assignees: NORTHWESTERN UNIVERSITY, REGENTS OF THE UNIVERITY OF MINNESOTA
    Inventors: Mark C. Hersam, Michael L. Geier, Pradyumna L. Prabhumirashi, Weichao Xu, Hyungil Kim
  • Patent number: 9613935
    Abstract: An LED module includes a substrate, one or more LED chips supported by a main surface of the substrate, and wirings. The substrate has one or more through holes penetrating from the main surface to a rear surface. The wirings are formed on the substrate and make electrical conduction with the LED chips. The wirings include pads which are formed on the main surface and make electrical conduction with the LED chips, rear surface electrodes which are formed on the rear surface, and through wirings which make electrical conduction between the pads and the rear surface electrodes and are formed on the inner sides of the through holes.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: April 4, 2017
    Assignee: Rohm Co., Ltd.
    Inventors: Masahiko Kobayakawa, Takashi Moriguchi
  • Patent number: 9604928
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element is provided which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes, in which a combination of the first organic compound and the second organic compound forms an exciplex (excited complex). The light-emitting element transfers energy by utilizing an overlap between the emission spectrum of the exciplex and the absorption spectrum of the phosphorescent compound and thus has high energy transfer efficiency. Therefore, a light-emitting element having high external quantum efficiency can be obtained.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 28, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Satoshi Seo, Nobuharu Ohsawa, Hideko Inoue, Kunihiko Suzuki
  • Patent number: 9607847
    Abstract: A cavity is formed in a semiconductor substrate wherein the width of the cavity is greater than the depth of the cavity and wherein the depth of the cavity is non uniform across the width of the cavity. The cavity may be formed under an electronic device in the semiconductor substrate. The cavity is formed in the substrate by performing a first cavity etch followed by repeated cycles of polymer deposition, cavity etch, and polymer removal.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Brian E. Goodlin, Karen H. R. Kirmse, Iqbal R. Saraf
  • Patent number: 9595585
    Abstract: A method of manufacturing a semiconductor device includes forming a PMOS region and an NMOS region in a semiconductor substrate, forming dummy gate structures in the PMOS and NMOS regions, and forming a gate hard mask layer overlying top portions and sidewalls of the dummy gate structures. The method includes forming silicon carbon regions embedded in the semiconductor substrate on both sides of the dummy gate structure in the NMOS region, removing the hard mask layer on top of the dummy gate in the NMOS region, and forming silicon germanium regions embedded in the semiconductor substrate on both sides of the dummy gate structure in the PMOS region. After forming the silicon carbon regions and the silicon germanium regions, while retaining the hard mask layer on top of the dummy gates in the PMOS region, performing ion implant to form source/drain regions in the NMOS region and the PMOS region.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: March 14, 2017
    Assignees: Semiconductor Manufacturing International (Beijing) Corporation, Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Gang Mao
  • Patent number: 9594264
    Abstract: An electrical device in provided having two electrodes separated from one another, wherein one temperature controlled electronic spin-state transition particle is in direct contact with each of the two electrodes, the particle being of the ionic type and containing a transition metal bearing a cationic charge.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: March 14, 2017
    Assignee: Centre National de la Recherche Scientifique—CNRS-
    Inventors: Jean-François Letard, Céline Etrillard, Bernard Doudin, Vina Faramarzi, Jean-François Dayen
  • Patent number: 9590017
    Abstract: Arrangements of pixel components that allow for full-color devices, while using emissive devices that use blue color altering layers in conjunction with blue emissive regions, that emit at not more than two colors, and/or that use limited number of color altering layers, are provided. Devices disclosed herein also may be achieved using simplified fabrication techniques compared to conventional side-by-side arrangements, because fewer masking steps may be required.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: March 7, 2017
    Assignee: Universal Display Corporation
    Inventors: Michael Hack, Michael Stuart Weaver, Julia J. Brown, Xin Xu
  • Patent number: 9590079
    Abstract: A semiconductor device and method of making such device is presented herein. The method includes disposing a gate layer over a dielectric layer on a substrate and further disposing a cap layer over the gate layer. A first transistor gate is defined having an initial thickness substantially equal to a combined thickness of the cap layer and the gate layer. A first doped region is formed in the substrate adjacent to the first transistor gate. The cap layer is subsequently removed and a second transistor gate is defined having a thickness substantially equal to the thickness of the gate layer. Afterwards, a second doped region is formed in the substrate adjacent to the second transistor gate. The first doped region extends deeper in the substrate than the second doped region, and a final thickness of the first transistor gate is substantially equal to the thickness of the second transistor gate.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: March 7, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Chun Chen, Mark Ramsbey, Shenqing Fang
  • Patent number: 9589927
    Abstract: An embodiment of a packaged RF amplifier device includes a device substrate, a transistor die coupled to the device substrate, and an isolation structure coupled to the transistor die. The transistor die has a top die surface, a bottom die surface, a semiconductor substrate, first and second transistors formed in the semiconductor substrate, a conductive structure at the top die surface and positioned between the first and second transistors, and a low resistance path that extends vertically through the semiconductor substrate between the conductive structure and the bottom die surface. The isolation structure is coupled to the conductive structure and extends into an area above the top die surface between the first and second transistors. The isolation structure may be a wirebond fence, a conductive wall, conductive pillars or vias, or a plated trench that extends vertically upward from the conductive structure. The device may be encapsulated with molding compound.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 7, 2017
    Assignee: NXP USA, INC.
    Inventors: Margaret A. Szymanowski, Kimberly J. Foxx, Robert A. Pryor
  • Patent number: 9574284
    Abstract: A method of filling a depression of a workpiece is provided. The method includes forming a first thin film made of a semiconductor material substantially not containing an impurity along a wall surface which defines the depression, forming an epitaxial region conforming to crystals of the semiconductor substrate from the semiconductor material of the first thin film moved toward a bottom of the depression by annealing, etching the first thin film remaining on the wall surface, performing gas phase doping upon the epitaxial region, forming a second thin film made of a semiconductor material substantially not containing an impurity along the wall surface, further forming an epitaxial region from the semiconductor material of the second thin film moved toward the bottom of the depression by annealing, and performing gas phase doping upon the second thin film remaining on the wall surface and the epitaxial region.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: February 21, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Youichirou Chiba, Hiroki Iriuda, Daisuke Suzuki
  • Patent number: 9577002
    Abstract: A solid-state imaging device includes a plurality of photoelectric conversion portions each provided in a semiconductor substrate and receives incident light through a light sensing surface, and a pixel separation portion provided to electrically separate a plurality of pixels. At least a pinning layer and a light shielding layer are provided in an inner portion of a trench provided on a side portion of each of the photoelectric conversion portions in an incident surface side, the trench includes a first trench and a second trench formed to be wider than the first trench in a portion shallower than the first trench, the pinning layer is formed in an inner portion of the first trench to cover an inside surface of the second trench, and the light shielding layer is formed to bury an inner portion of the second trench at least via the pinning layer.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Sony Corporation
    Inventor: Takayuki Enomoto
  • Patent number: 9570655
    Abstract: Provided is a light-emitting device that has a high emission efficiency, excellent stability and temperature properties, and that generates light having a high color rendering property sufficient for practical use. This semiconductor light-emitting device (1) comprises a semiconductor light-emitting element (2) that emits blue light, a green phosphor (14) that absorbs the blue light and emits green light, and an orange phosphor (13) that absorbs the blue light and emits orange light, and is characterized in that the orange phosphor is an Eu-activated ?-SiAlON phosphor having an emission spectrum peak wavelength within a range of 595 to 620 nm.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: February 14, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kenichi Yoshimura, Kohsei Takahashi, Hiroshi Fukunaga
  • Patent number: 9570555
    Abstract: A method of forming a semiconductor device that includes providing a first set of fin structures having a first pitch, and a second set of fin structure having a second pitch, wherein the second pitch is greater than the first pitch. An epitaxial semiconductor material on the first and second set of fin structures. The epitaxial semiconductor material on the first fin structures is merging epitaxial material and the epitaxial material on the second fin structures is non-merging epitaxial material. A dielectric liner is formed atop the epitaxial semiconductor material that is present on the first and second sets of fin structures. The dielectric liner is removed from a portion of the non-merging epitaxial material that is present on the second set of fin structures. A bridging epitaxial semiconductor material is formed on exposed surfaces of the non-merging epitaxial material.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 14, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Balasubramanian Pranatharthiharan, Junli Wang, Ruilong Xie
  • Patent number: 9564379
    Abstract: Via chain and serpentine/comb test structures are in kerf areas of a wafer. The via chain test structures comprise a first via chain and a second via chain in a first kerf area. The via chain test structures are formed such that geometrically shaped portions of the first via chain and geometrically shaped portions of the second via chain alternate along the length of the first kerf area.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: February 7, 2017
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Balasingham Bahierathan, Christopher B. D'Aleo, Gregory M. Johnson, Muthukumaraamy Karthikeyan, Shenzhi Yang