Patents Examined by Reema Patel
  • Patent number: 11563075
    Abstract: A display device includes a substrate including a display area and a peripheral area disposed around the display area. The peripheral area includes a bending region and a contact region adjacent to the bending region. A first connection line includes a first portion disposed in the contact region, and a second portion disposed in both the bending region and the contact region, and including a first layer and a second layer. At least part of the second layer of the second portion overlaps the first layer of the second portion. In the contact region, the first layer of the second portion is electrically connected to the first portion, and the second layer of the second portion is electrically connected to the first layer of the second portion.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: January 24, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hyun Ae Park, Sun-Ja Kwon, Byung Sun Kim, Yang Wan Kim, Su Jin Lee, Jae Yong Lee
  • Patent number: 11557666
    Abstract: A high-electron mobility transistor includes a substrate; a channel layer on the substrate; a AlGaN layer on the channel layer; and a P—GaN gate on the AlGaN layer. The AlGaN layer comprises a first region and a second region. The first region has a composition that is different from that of the second region.
    Type: Grant
    Filed: November 22, 2020
    Date of Patent: January 17, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Hsing Chen, Yu-Ming Hsu, Tsung-Mu Yang, Yu-Ren Wang
  • Patent number: 11557506
    Abstract: Methods for processing a semiconductor substrate are proposed. An example of a method includes forming cavities in the semiconductor substrate by implanting ions through a first surface of the semiconductor substrate. The cavities define a separation layer in the semiconductor substrate. A semiconductor layer is formed on the first surface of the semiconductor substrate. Semiconductor device elements are formed in the semiconductor layer. The semiconductor substrate is separated along the separation layer into a first substrate part including the semiconductor layer and a second substrate part.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: January 17, 2023
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Werner Schustereder, Alexander Breymesser, Mihai Draghici, Tobias Franz Wolfgang Hoechbauer, Wolfgang Lehnert, Hans-Joachim Schulze, Marko David Swoboda
  • Patent number: 11552166
    Abstract: A high withstand voltage isolation region has a first diffusion layer of a second conductivity type formed on a principal surface of a semiconductor substrate. The high withstand voltage MOS has a second diffusion layer of the second conductivity type formed on the principal surface of the semiconductor substrate. A low side circuit region has a third diffusion layer of a first conductivity type formed on the principal surface of the semiconductor substrate. A fourth diffusion layer of the first conductivity type having a higher impurity concentration than the semiconductor substrate is formed on the principal surface of the semiconductor substrate exposed between the first diffusion layer and the second diffusion layer. The fourth diffusion layer extends from the high side circuit region to the low side circuit region and does not contact the third diffusion layer.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 10, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Manabu Yoshino, Kazuhiro Shimizu
  • Patent number: 11551932
    Abstract: The present invention relates to various high quality n-type and p-type doped gallium-based semiconductor materials, electronic components incorporating these materials, and processes of producing these materials. In particular, The present invention relates processes to achieve high quality, uniform doping of a whole wafer or a thin layer of gallium-based semiconductor materials for various applications such as a vertical power transistor or diode.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: January 10, 2023
    Assignee: The Curators of the University of Missouri
    Inventors: Jae Wan Kwon, Quang Nguyen
  • Patent number: 11552157
    Abstract: A display apparatus includes a base substrate including a display area in which an image is displayed and a peripheral area adjacent to the display area, a source/drain pattern on the base substrate, the source/drain pattern including a connecting electrode in a pad portion of the peripheral area and a electrode of a thin film transistor in the display area, a planarization insulation layer on the base substrate, the planarization insulation layer contacting a side surface of the connecting electrode and a side surface of the electrode of the thin film transistor, and exposing a top surface of the connecting electrode, a connecting member contacting the connecting electrode, and a driving member including a driving circuit, the driving member being connected to the connecting member.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: January 10, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Dong Hyun Son, Sung Hoon Moon, Sung Jun Kim, Kohei Ebisuno, Deok Hoi Kim, Sanghoon Oh
  • Patent number: 11542600
    Abstract: Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: January 3, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Viljami Pore, Timo Hatanpää, Mikko Ritala, Markku Leskelä
  • Patent number: 11538907
    Abstract: A semiconductor memory device includes first conducting layers and a first semiconductor layer opposed to the first conducting layers. If a concentration of the dopant in the first semiconductor layer is measured along an imaginary straight line, the concentration of the dopant has: a maximum value at a first point, a minimum value in a region closer to the first conducting layer than the first point at a second point; and a minimum value in a region farther from the first conducting layer than the first point at a third point. The second point is nearer to an end portion of the first semiconductor layer on the first conducting layer side than that on the opposite side. The third point is farther from the end portion on the first conducting layer side than that on the opposite side.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: December 27, 2022
    Assignee: Kioxia Corporation
    Inventor: Masakazu Goto
  • Patent number: 11532679
    Abstract: A method of fabricating an array substrate is provided. The method includes forming a plurality of first thin film transistors on a base substrate, a respective one of the plurality of first thin film transistors formed to include a first active layer, a first gate electrode, a first source electrode and a first drain electrode; and forming a plurality of second thin film transistors on the base substrate, a respective one of the plurality of second thin film transistors formed to include a second active layer, a second gate electrode, a second source electrode and a second drain electrode. Forming the first source electrode includes forming a first source sub-layer and forming a second source sub-layer in separate patterning steps. Forming the first drain electrode includes forming a first drain sub-layer and forming a second drain sub-layer in separate patterning steps.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: December 20, 2022
    Assignees: Mianyang BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Zhu Chen, Kwiyoung Yun, Xin Cao, Hongcan Liu, Ming Dai, Haifeng Xu, Haoyuan Fan
  • Patent number: 11532621
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a source region and a drain region disposed within an upper surface of a substrate. One or more dielectric materials are disposed within a trench defined by sidewalls of the substrate that surround the source region and the drain region. The one or more dielectric materials include one or more interior surfaces defining a recess within the one or more dielectric materials. A gate structure is disposed over the substrate between the source region and the drain region. The gate structure includes a first gate material over the upper surface of the substrate and a second gate material. The second gate material completely fills the recess as viewed along a cross-sectional view.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Te-Hsin Chiu, Wei Cheng Wu
  • Patent number: 11527547
    Abstract: Embodiments of through array contact structures of a 3D memory device and fabricating method thereof are disclosed. The memory device includes an alternating layer stack disposed on a first substrate. The alternating layer stack includes a first region including an alternating dielectric stack, and a second region including an alternating conductor/dielectric stack. The memory device further comprises a barrier structure including two parallel barrier walls extending vertically through the alternating layer stack and laterally along a word line direction to laterally separate the first region from the second region. The memory device further comprises a plurality of through array contacts in the first region, each through array contact extending vertically through the alternating dielectric stack.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: December 13, 2022
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Zhenyu Lu, Simon Shi-Ning Yang, Feng Pan, Steve Weiyi Yang, Jun Chen, Guanping Wu, Wenguang Shi, Weihua Cheng
  • Patent number: 11527586
    Abstract: A display device, a method for controlling the same, and a display panel are provided, the display device includes: a transparent substrate; a plurality of electroluminescent devices arranged in an array on the substrate, a device with variable transmittance located between the electroluminescent devices and the substrate, the device with variable transmittance is configured so that a transmittance of the device with variable transmittance is switchable between a first transmittance and a second transmittance, and the first transmittance is greater than the second transmittance; and an image acquisition device on a side of the substrate away from the electroluminescent devices, in a case where the transmittance of the device with variable transmittance is switched to the first transmittance, external light irradiating the display device can pass through the device with variable transmittance and be incident on the image acquisition device.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 13, 2022
    Assignees: Chengdu BOE Optoelectronics Technology Co., Ltd., Beijing BOE Technology Development Co., Ltd.
    Inventor: Weilong Zhou
  • Patent number: 11521852
    Abstract: Provided are a method for preparing an InGaN-based epitaxial layer on a Si substrate (12), as well as a silicon-based InGaN epitaxial layer prepared by the method. The method may include the steps of: 1) directly growing a first InGaN-based layer (11) on a Si substrate (12); and 2) growing a second InGaN-based layer on the first InGaN-based layer (11).
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 6, 2022
    Assignee: South China Normal University
    Inventors: Richard Notzel, Peng Wang, Stefano Sanguinetti, Guofu Zhou
  • Patent number: 11515355
    Abstract: A method includes forming a plurality of openings extending into a substrate from a front surface of the substrate. The substrate includes a first semiconductor material. Each of the plurality of openings has a curve-based bottom surface. The method includes filling the plurality of openings with a second semiconductor material. The second semiconductor material is different from the first semiconductor material. The method includes forming a plurality of pixels that are configured to sense light in the plurality of openings, respectively, using the second semiconductor material.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: November 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LIMITED
    Inventors: Yeh-Hsun Fang, Chiao-Chi Wang, Chung-Chuan Tseng, Chia-Ping Lai
  • Patent number: 11515172
    Abstract: In a first aspect of a present inventive subject matter, a method of etching an object to be etched with an etching liquid that contains bromine, and the object contains at least gallium and/or aluminum.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 29, 2022
    Assignee: FLOSFIA INC.
    Inventor: Isao Takahashi
  • Patent number: 11508623
    Abstract: The present disclosure describes fabricating devices with tunable gate height and effective capacitance. A method includes forming a first metal gate stack in a dummy region of a semiconductor substrate, the first metal gate stack including a first work function metal (WFM) layer; forming a second metal gate stack in an active device region of the semiconductor substrate, the second metal gate stack including a second WFM layer different than the first WFM layer; and performing a CMP process using a slurry including a charged abrasive nanoparticles. The charged abrasive nanoparticles include a first concentration in the active device region different from a second concentration in the dummy region causing different polish rates in the active device region and dummy region. After the performing of the CMP process, the first metal gate stack has a first height greater different from a second height of the second metal gate stack.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Chang Wen, Chang-Yun Chang, Keng-Yao Chen, Chen-Yu Tai, Yi-Ting Fu
  • Patent number: 11508820
    Abstract: A single crystal semiconductor structure includes: an amorphous substrate; a single crystal semiconductor layer provided on the amorphous substrate; and a thin orienting film provided between the amorphous substrate and the single crystal semiconductor layer, wherein the thin orienting film is a single crystal thin film, and the thin orienting film has a non-zero thickness that is equal to or less than 10 times a critical thickness hc.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: November 22, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., iBeam Materials, Inc.
    Inventors: Junhee Choi, Joohun Han, Vladimir Matias
  • Patent number: 11502102
    Abstract: Embodiments of a method for forming a three-dimensional (3D) memory device includes the following operations. First, a channel hole is formed in a stack structure of a plurality first layers and a plurality of second layers alternatingly arranged over a substrate. A semiconductor channel is formed by filling the channel hole with a channel-forming structure. The plurality of first layers is removed. A plurality of conductor layers is formed from the plurality of second layers. Further, a gate-to-gate dielectric layer is formed between the adjacent conductor layers, the gate-to-gate dielectric layer including at least one sub-layer of silicon oxynitride.
    Type: Grant
    Filed: November 21, 2020
    Date of Patent: November 15, 2022
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventor: Li Hong Xiao
  • Patent number: 11502019
    Abstract: One example heat sink includes a heat dissipation substrate, a connector, and a fastener. The heat dissipation substrate is configured to dissipate heat for a packaged chip located on a circuit board, and the heat dissipation substrate is located on a surface that is of the packaged chip and that is opposite to the circuit board. A first heat dissipation substrate and a second heat dissipation substrate of the heat dissipation substrate each have a heat conduction surface that conducts heat with a chip in the packaged chip. Different heat conduction surfaces correspond to different chips.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: November 15, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Shoubiao Xu, Shanjiu Chi, Wenhui Zeng
  • Patent number: 11495489
    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuan-Liang Liu, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu