Patents Examined by Ryan C. Jager
  • Patent number: 7622985
    Abstract: An active compensation filter for the application in the electric power supply in a land vehicle, which comprises a high-pass filter which is to be coupled with a supply voltage line which carries a supply voltage, in order to detect frequency and amplitude of interference voltage components of the supply voltage. A signal amplifier which is connected in series with the high-pass filter amplifies the detected interference voltage components and supplies them to a coupling element as output signals, which is connected in series with the signal amplifier and comprises a primary side and a secondary side. The primary side is fed with the output signals of the signal amplifier and the secondary side is looped into the supply voltage line.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: November 24, 2009
    Assignee: Compact Dynamics GmbH
    Inventors: Andreas Gründl, Bernhard Hoffmann, Alexander Kleimaier
  • Patent number: 7622970
    Abstract: A method and circuitry for a Delay Locked Loop (DLL) or a phase Locked Loop (PLL) is disclosed, which improves the loop stability at high frequencies and allows maximum tracking bandwidth, regardless of process, voltage, or temperature variations. Central to the technique is to effectively operate the loop at a lower frequency close to its own intrinsic bandwidth (1/tLoop) instead of at the higher frequency of the clock signal (1/tCK). To do so, in one embodiment, the loop delay, tLoop, is measured or estimated prior to operation of the loop. The phase detector is then enabled to operate close to the loop frequency, 1/tLoop. In short, the phase detector is made not to see activity during useless delay times, which prevents the loop from overreacting and becoming unstable.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: November 24, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Seong-Hoon Lee
  • Patent number: 7616042
    Abstract: For the purpose of achieving multiplexing of data signals for the channels of more than four in number in the generating of a frequency-divided clock signal using toggle flip-flop circuits (TFF), while avoiding any possible phase shift relationship between generated frequency-divided clock signals attributed to the indefinite initial state posing the inherent problem of the TFF, there is provided a clock generator circuit comprising a plurality of toggle flip-flop circuits connected in series, capable of outputting a pair of frequency-divided clock signals with different phases; and a delay circuit connected to the toggle flip-flop circuit, capable of outputting a clock signal with a phase shifted with respect to the phases of the pair of frequency-divided clock signal phases by delaying either one or both of the pair of frequency-divided clock signals being outputted from the toggle flip-flop circuits.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: November 10, 2009
    Assignee: Fujitsu Limited
    Inventor: Toshihide Suzuki
  • Patent number: 7609106
    Abstract: A constant current circuit includes a first current mirror composed of a first transistor formed on a first current path and a second transistor formed on a second current path, a second current mirror composed of a third transistor formed on the first current path and a fourth transistor formed on the second current path, a first diode formed on the first current path, a second diode formed on the second current path, a resistor formed on the second current path, a variable resistance element connected with the first current path and with the second current path, and a feedback unit to control a resistance value of the variable resistance element based on a current flowing through the second current path.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 27, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Yasuhiro Watanabe
  • Patent number: 7609100
    Abstract: An on-chip signal waveform measurement apparatus mounted on an IC chip measures signal waveforms at detection points on the IC chip. A reference voltage generator successively generates reference voltages different from each other based on a predetermined timing signal, and Signal probing front-end circuits are mounted to correspond to the detection points, respectively, and each buffer-amplifies a voltage at each detection point, compares the buffer-amplified voltage with each reference voltage, and digitizes a comparison result into a binary digital output signal. A multiplexer time-division-multiplexes the binary digital output signals from the signal probing front-end circuits. A data processing unit calculates a judgment output probability for a detected voltage at each detection point detected by the respective signal probing front-end circuits, by counting a number of times of a predetermined binary value of the multiplexed binary digital output signal.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 27, 2009
    Assignee: Semiconductor Technology Academic Research Center
    Inventor: Makoto Nagata
  • Patent number: 7605628
    Abstract: A method for glitch-free updates of a standard cell-based programmable delay including the steps of (A) generating an output signal in response to an input signal and a plurality of first control signals and (B) generating the plurality of first control signals in response to the output signal and a plurality of second control signals. The output signal may include a delayed version of the input signal. An amount of delay between the input signal and the output signal may be determined based upon the plurality of first control signals.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: October 20, 2009
    Assignee: LSI Corporation
    Inventors: Terence J. Magee, Thomas Hughes, Hui-Yin Seto
  • Patent number: 7602221
    Abstract: A dynamic frequency divider is proposed in which a double mixer is used for the dynamic frequency division. In one example the division is by N, where N?2 and a positive integer. The dynamic frequency divider further includes an input stage with level shift means, a filter filtering the output signal and providing a feedback signal to the double mixer. In one case, using just one double mixer significantly reduces the power consumption of a dynamic frequency divider and utilizes considerably less space, making it simpler, cheaper and smaller.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: October 13, 2009
    Assignee: Infineon Technologies AG
    Inventor: Saverio Trotta
  • Patent number: 7598787
    Abstract: A signal generation apparatus, a frequency converting apparatus and a receiver, in which the signal generation apparatus includes an oscillator, a duty cycle adjusting circuit, and a signal generation circuit. The oscillator generates differential signals. The duty cycle adjusting circuit adjusts duty cycles of differential output signals, in response to at least one of a plurality of control signals, to adjust phases of the differential output signals generated according to a result of amplifying a difference between the differential signals input through a pair of input terminals so as to output duty cycle adjusted differential output signals to a pair of output terminals. The signal generation circuit outputs an in-phase signal and a quadrature-phase signal in response to the duty cycle adjusted differential output signals.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyun-Seok Kim
  • Patent number: 7598783
    Abstract: A DLL circuit includes a duty ratio detection unit that detects a duty ratio of a rising clock and a duty ratio of a falling clock, thereby outputting a duty ratio detection signal. A correction control unit generates a correction control signal in response to the duty ratio detection signal. A duty ratio correction unit corrects a duty ratio of an internal. clock in response to the correction control signal, thereby outputting a reference clock.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: October 6, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong-Suk Shin, Hyun-Woo Lee, Won-Joo Yun
  • Patent number: 7592844
    Abstract: A comparator comprises complementary (e.g. NMOS and PMOS) comparator cells having overlapping common mode input voltage ranges which together extend approximately from rail to rail. A digital logic arrangement, including edge detectors, gates, and a latch, is responsive to transitions at the outputs of the comparator cells to set the latch in response to the earliest rising edge and to reset the latch in response to the earliest falling edge. An output of the latch constitutes an output of the comparator. Consequently the comparator is edge-sensitive with a speed optimized for a wide common mode input voltage range. Additional logic gates can provide level-sensitive control of the latch.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: September 22, 2009
    Assignee: Power Integrations, Inc.
    Inventor: Roger Colbeck
  • Patent number: 7583107
    Abstract: A sense amplifier circuit for low voltage applications is provided. In one implementation, the sense amplifier circuit includes a reference current generation circuit coupled to a power supply. The reference current generation circuit generates a reference current that varies linearly with respect to changes in voltages of the power supply. The sense amplifier circuit further includes a sensing circuit coupled to the reference current generation circuit. The sensing circuit senses an amplitude of a current based at least on part on the reference current.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: September 1, 2009
    Assignee: Atmel Corporation
    Inventors: Jerome Pratlong, Marc Merandat, Stephane Ricard, Sylvie Bruneau Vergnes, Laureline Bour
  • Patent number: 7579896
    Abstract: A method and apparatus are disclosed for generating multiple separate analog signals using a single microcontroller output pin. The microcontroller generates a waveform that is used to concurrently generate multiple separate analog signals. The microcontroller outputs a waveform that includes a first signal from one of the microcontroller's output pins. The first signal is used to produce a first analog signal. The microcontroller then outputs a delineating signal, as part of the waveform, from the microcontroller's output pin. The delineating signal indicates the start of a next signal in the waveform. The microcontroller then outputs a second signal, as part of the waveform, from its output pin. The second signal is used to produce a second analog signal. The waveform includes the first signal that is followed by the delineating signal that is followed by the second signal.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Robert Allan Faust, John Daniel Upton
  • Patent number: 7579886
    Abstract: An adaptive phase-locked loop (PLL) circuit produces an output signal having a frequency in reference to the frequency of a reference signal. The PLL circuit includes an oscillator configured to generate the output signal according to a frequency control signal, and a processing circuit configured to generate a feedback signal deriving from the output signal. An adjustable shift circuit is provided to time-shift the feedback signal. The PLL further includes a phase comparison circuit configured to generate a phase error signal indicating a phase error between the time-shifted feedback signal and the reference signal, and a control circuit configured to generate the frequency control signal based on the phase error signal. The adjustable shift circuit adjusts a time-shift amount to time-shift the feedback signal according to the phase error signal.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: August 25, 2009
    Assignee: Cadence Design Systems, Inc.
    Inventors: Michael M. Hufford, Eric Naviasky, Tony Caviglia
  • Patent number: 7570089
    Abstract: An output stage interface circuit for interfacing with a data bus, comprising first and second rails for receiving respectively a high voltage and a low voltage from a power supply; a data output terminal; a first main switch element coupled between said terminal and the first rail and comprising a first main MOS device having a gate and an independently configurable back gate, and responsive to a first data control signal applied to the gate pulling the voltage on the data output terminal toward the first rail voltage; and a first control circuit responsive to the voltage on said terminal being pulled from a first state across a first voltage reference to a second state for coupling said back gate to said terminal and permitting coupling of the gate of said MOS device to said terminal, the first main MOS device presenting a high impedance on the terminal when its voltage is pulled to the second state.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: August 4, 2009
    Assignee: Analog Devices, Inc.
    Inventors: Colm Patrick Ronan, John Twomey, Brian Anthony Moane, Liam Joseph White
  • Patent number: 7564273
    Abstract: Described is a switched-capacitor network and method for performing an analog circuit function. The circuit includes a switched-capacitor network, a comparator, and a voltage-offset network. The switched-capacitor network includes multiple switches, each having a respective threshold voltage and connected to one of a high-limit voltage, a low-limit voltage, and electrical ground. A first comparator input terminal in communication with the switched-capacitor network is configured to receive a node voltage therefrom during a first phase. The second input terminal is configured to receive one of the high-limit voltage and the low-limit voltage. The voltage-offset network provides a voltage shift at the first input terminal setting an input reference level at a mid-level voltage with respect to the high-limit voltage and the low-limit voltage.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: July 21, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew C. Guyton, Hae-Seung Lee
  • Patent number: 7560962
    Abstract: Generating an output signal having a frequency of 1/(M+F) of the frequency of the input signal, wherein M represents an integer and F represents a non-zero fraction. Assuming F equals (Q/R) in one embodiment, wherein Q and R are integers, R intermediate signals phase shifted by equal degree (relative to the one with closest phase shift) in one clock period of the input signal are generated. A selection circuit may select one of the intermediate signals in one clock cycle, select the successive signals with increasing phase shift in Q clock cycles, and leave the intermediate signal with the same shift as in the previous clock cycle in the remaining ones of the M clock cycles. A counter counts a change of state in the output of the selection circuit, and generates a pulse representing an edge of the output signal at the time instance when counter counts M.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Anant Shankar Kamath
  • Patent number: 7554375
    Abstract: Delay circuitry is described that includes clock mixing circuitry to provide a selectable propagation time. Output signals from the mixing circuitry are selectively coupled through a variable delay line to synchronize two clock signals.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: June 30, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Jongtae Kwak
  • Patent number: 7554384
    Abstract: A “digital data stream,” “binary sequence” or word can be generated by a logic circuit such as a processor and the sequence can be converted to a series of pulses such that the content of the sequence can be utilized to accurately control/drive a plurality of power transistors. Accordingly, a regulated voltage can be provided through such a data type output of a processor. Thus, a standard processor that executes data processing operations can provide a low level logic signal as a serial digital transmission, possibly a four bit word, and control a power supply without significant modification. To achieve such a conversion the processor can be capacitively coupled to a voltage level shifter and a delay module to provide a plurality of power transistor drive signals. The converter can be wholly integrated onto a processor or motherboard to eliminate devices and stand alone assemblies that are commonly required in data processing systems.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 30, 2009
    Assignee: Intel Corporation
    Inventors: Ted Dibene, Tomm Aldridge
  • Patent number: 7548099
    Abstract: In a semiconductor memory device, a reference delay section has a first delay value and delays a first signal by a reference delay value obtained from the first delay value and an adjustment value while changing the adjustment value, and fixes the adjustment value when the first signal and the delayed first signal meet a predetermined condition. A delay section has a second delay value and generates an output signal based on a summation of the fixed adjustment value and the second delay value, and a set multiplication value in response to a trigger signal such that the output signal in an active state for a period corresponding to the set multiplication value.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: June 16, 2009
    Assignee: Elpida Memory, Inc.
    Inventor: Minari Arai
  • Patent number: 7545193
    Abstract: Phase interpolation techniques for voltage-controlled delay line (VCDL) implementation are provided. The techniques of the invention may employ a second-order phase interpolation topology to improve tuning range performance of the VCDL over process and temperature variation. In one aspect of the invention, the technique may use a complementary input signal to set an absolute 180-degree phase reference. As a result, the maximum tuning range of 180 degrees can be achieved regardless of internal delay variation.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: June 9, 2009
    Assignee: International Business Machines Corporation
    Inventors: Woogeun Rhee, Daniel Friedman, Mehmet Soyuer