Patents Examined by Sonya D. McCall-Shepard
  • Patent number: 9711548
    Abstract: Methods of forming semiconductor devices are disclosed. In some embodiments, a first trench and a second trench are formed in a substrate, and dopants of a first conductivity type are implanted along sidewalls and a bottom of the first trench and the second trench. The first and second trenches are filled with an insulating material, and a gate dielectric and a gate electrode over the substrate, the gate dielectric and the gate electrode extending over the first trench and the second trench. Source/drain regions are formed in the substrate on opposing sides of the gate dielectric and the gate electrode.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chi Hung, Jhy-Jyi Sze, Shou-Gwo Wuu
  • Patent number: 9711344
    Abstract: To improve the manufacturing yield of a semiconductor device, there is to provide a method of manufacturing a semiconductor device using a multilayer resist, in which before performing water repelling processing for immersion exposure on a wafer, an anti-reflection film, an underlayer film, and an intermediate film applied to a wafer edge portion are eliminated through rinse processing.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: July 18, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Toshifumi Suganaga
  • Patent number: 9698268
    Abstract: Methods of forming a semiconductor device are provided. A method of forming a semiconductor device includes forming a semiconductor layer on a fin, where the fin and the semiconductor layer include first and second semiconductor materials, respectively. Moreover, the method includes defining first and second active fins that include the second semiconductor material, by removing at least a portion of the fin. Related semiconductor devices are also provided.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: July 4, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Bo-Ram Kim
  • Patent number: 9695037
    Abstract: The present subject matter relates to systems and methods for sealing one or more MEMS devices within an encapsulated cavity. A first material layer can be positioned on a substrate, the first material layer comprising a first cavity and a second cavity that each have one or more openings out of the first material layer. At least the first cavity can be exposed to a first atmosphere and sealed while it is exposed to the first atmosphere while not sealing the second cavity. The second cavity can then be exposed to a second atmosphere that is different than the first atmosphere, and the second cavity can be sealed while it is exposed to the second atmosphere.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 4, 2017
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus
  • Patent number: 9691954
    Abstract: A light-emitting diode (LED) package includes a light-emitting structure including a first conductive-type semiconductor layer, an active layer, and a second conductive-type semiconductor layer; an isolating insulation layer; a first connection electrode portion and a second connection electrode portion electrically connected to the first conductive-type semiconductor layer and the second conductive-type semiconductor layer, respectively; a first electrode pad and a second electrode pad electrically connected to the first connection electrode portion and the second connection electrode portion, respectively; a first molding resin layer provided between the first electrode pad and the second electrode pad; a first pillar electrode and a second pillar electrode electrically connected to the first electrode pad and the second electrode pad, respectively; and a second molding resin layer provided on the first molding resin layer, the first electrode pad, and the second electrode pad, and between the first pillar
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: June 27, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-kuk Lee, Si-han Kim, Hyung-kun Kim, Yong-min Kwon, Geun-woo Ko
  • Patent number: 9685531
    Abstract: A method for manufacturing a semiconductor device having metal gates includes following steps. A substrate including a first transistor and a second transistor formed thereon is provided. The first transistor includes a first gate trench and the second transistor includes a second gate trench. A patterned first work function metal layer is formed in the first gate trench and followed by forming a second sacrificial masking layer respectively in the first gate trench and the second gate trench. An etching process is then performed to form a U-shaped first work function metal layer in the first gate trench. Subsequently, a two-step etching process including a strip step and a wet etching step is performed to remove the second sacrificial masking layer and portions of the U-shaped first work function metal layer to form a taper top on the U-shaped first work function metal layer in the first gate trench.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: June 20, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Feng-Yi Chang
  • Patent number: 9679993
    Abstract: After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 13, 2017
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Patent number: 9673229
    Abstract: An array substrate, a method for manufacturing the same and a display apparatus are provided. The array substrate comprises: a substrate (1); a common electrode (2) and a pixel electrode (10) sequentially formed on the substrate (1) and insulated from each other; a thin film transistor comprising a gate electrode (4), an active layer (7), a source electrode (8a) and a drain electrode (8b), wherein the drain electrode (8b) is electrically connected with the pixel electrode (10); a common electrode line (5) disposed in a same layer as the gate electrode (4); and an insulating layer (3) between the gate electrode (4) and the common electrode (2), wherein the common electrode (2) is connected with the common electrode line (5) through a through hole in the insulating layer (3).
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: June 6, 2017
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Jinchao Bai, Yao Liu, Liangliang Li, Zhaohui Hao, Liang Sun
  • Patent number: 9666604
    Abstract: A display device includes a first pixel, a second pixel, a first substrate, and a second substrate. The first pixel includes a first pixel electrode, a first conductive film, and a first transistor. The first pixel electrode is electrically connected to the first transistor. The first conductive film includes a region functioning as a common electrode. The second pixel includes a second pixel electrode, a second conductive film, and a second transistor. The second pixel electrode is electrically connected to the second transistor. The second conductive film includes a region functioning as a common electrode. The first conductive film and the second pixel electrode are provided on the same plane. A first insulating film is provided over the first conductive film and the second pixel electrode. The first pixel electrode and the second conductive film are provided over the first insulating film.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: May 30, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Kimura, Daisuke Kubota, Shunpei Yamazaki
  • Patent number: 9660078
    Abstract: A device is provided. The device includes a transistor formed on a semiconductor substrate, the transistor having a conduction channel. The device includes at least one edge dislocation formed adjacent to the conduction channel on the semiconductor substrate. The device also includes at least one free surface introduced above the conduction channel and the at least one edge dislocation.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: May 23, 2017
    Assignee: Intel Corporation
    Inventors: Cory E. Weber, Mark Y. Liu, Anand Murthy, Hemant Deshpande, Daniel B. Aubertine
  • Patent number: 9659900
    Abstract: Semiconductor devices are described that have a through-substrate via formed therein. In one or more implementations, the semiconductor devices include a semiconductor wafer and an integrated circuit die bonded together with an adhesive material. The semiconductor wafer and the integrated circuit die include one or more integrated circuits formed therein. The integrated circuits are connected to one or more conductive layers deployed over the surfaces of the semiconductor wafer and an integrated circuit die. A via is formed through the semiconductor wafer and the patterned adhesive material so that an electrical interconnection can be formed between the integrated circuits formed in the semiconductor wafer and the integrated circuits formed in the integrated circuit die. The via includes a conductive material that furnishes the electrical interconnection between the semiconductor wafer and the integrated circuit die.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 23, 2017
    Assignee: Maxim Intergrated Products, Inc.
    Inventors: Xuejun Ying, Arkadii V. Samoilov, Peter McNally, Tyler Parent
  • Patent number: 9653425
    Abstract: Anisotropic conductive film (ACF) structures and manufacturing methods for forming the same are described. The manufacturing methods include preventing clusters of conductive particles from forming between adjacent bonding pads and that are associated with electrical shorting of ACF structures. In some embodiments, the methods involve use of multiple layered ACF materials that include a non-electrically conductive layer that reduces the likelihood of formation of conductive particle clusters between bonding pads. In some embodiment, the methods include the use of ultraviolet sensitive ACF material combined with lithography techniques that eliminate conductive particles from between neighboring bonding pads. In some embodiments, the methods involve the use of insulation spacers that block conductive particles from entering between bonding pads. Any suitable combination of the described methods can be used.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: May 16, 2017
    Assignee: Apple Inc.
    Inventors: Bo Zhang, Sang Ha Kim, Cyrus Y. Liu, Kuo-Hua Sung
  • Patent number: 9653376
    Abstract: A heat dissipation package structure includes a substrate, a chip disposed on the substrate and a heat dissipation sheet. The heat dissipation sheet comprises a covering portion disposed on a back surface of the chip, a first lateral covering portion disposed on a first lateral surface of the chip and a first conducting portion disposed on the substrate. The back surface comprises a first width, the covering portion comprises a second width, the chip comprises a thickness, and there is an interval between the chip and the substrate. The second width is not larger than summation of the first width, double the interval and double the thickness for making the chip disposed between the heat dissipation sheet and the substrate is not within a completely sealed space so as to prevent the heat dissipation sheet from deformation and separation from the chip or the substrate cause of air expansion.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: May 16, 2017
    Assignee: CHIPBOND TECHNOLOGY CORPORATION
    Inventor: Chin-Tang Hsieh
  • Patent number: 9647137
    Abstract: An object is to control composition and a defect of an oxide semiconductor, another object is to increase a field effect mobility of a thin film transistor and to obtain a sufficient on-off ratio with a reduced off current. A solution is to employ an oxide semiconductor whose composition is represented by InMO3(ZnO)m, where M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al, and m is preferably a non-integer number of greater than 0 and less than 1. The concentration of Zn is lower than the concentrations of In and M. The oxide semiconductor has an amorphous structure. Oxide and nitride layers can be provided to prevent pollution and degradation of the oxide semiconductor.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 9, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunichi Ito, Toshinari Sasaki, Miyuki Hosoba, Junichiro Sakata
  • Patent number: 9646876
    Abstract: A method of forming features in a dielectric layer is described. A via, trench or a dual-damascene structure may be present in the dielectric layer prior to depositing a conformal aluminum nitride layer. The conformal aluminum nitride layer is configured to serve as a barrier to prevent diffusion across the barrier. The methods of forming the aluminum nitride layer involve the alternating exposure to two precursor treatments (like ALD) to achieve high conformality. The high conformality of the aluminum nitride barrier layer enables the thickness to be reduced and the effective conductivity of the subsequent gapfill metal layer to be increased.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: May 9, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Srinivas Guggilla, Alexandros T. Demos, Bhaskar Kumar, He Ren, Priyanka Dash
  • Patent number: 9640432
    Abstract: The disclosed subject matter provides a memory device structure and a fabricating method thereof. The memory device structure includes a substrate including a device region and a peripheral region; multiple gate structures; a first dielectric layer, a second barrier layer, multiple source interconnecting lines, and multiple drain region plugs; a second dielectric layer in the device region include multiple source line plugs, and multiple second drain region plugs, and multiple controlling gate plugs; a third dielectric layer including multiple first conductive layers; a fourth dielectric layer including multiple interconnecting structures; a fifth dielectric layer including multiple second conductive layers; and a sixth dielectric layer including multiple third conductive layers.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: May 2, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventors: Jinshuang Zhang, Shaobin Li, Sheng-Fen Chiu
  • Patent number: 9634012
    Abstract: In a method of forming active patterns, first patterns are formed in a first direction on a cell region of a substrate, and a second pattern is formed on a peripheral circuit region of the substrate. The first pattern extends in a third direction crossing the first direction. First masks are formed in the first direction on the first patterns, and a second mask is formed on the second pattern. The first mask extends in a fourth direction crossing the third direction. Third masks are formed between the first masks extending in the fourth direction. The first and second patterns are etched using the first to third masks to form third and fourth patterns. Upper portions of the substrate are etched using the third and fourth patterns to form first and second active patterns in the cell and peripheral circuit regions.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: April 25, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Jin Park, Chan-sic Yoon, Ki-Seok Lee, Hyeon-Ok Jung, Dae-Ik Kim, Bong-Soo Kim, Yong-Kwan Kim, Eun-Jung Kim, Se-Myeong Jang, Min-su Choi, Sung-Hee Han, Yoo-Sang Hwang
  • Patent number: 9633840
    Abstract: A step of preparing a silicon carbide substrate (S11), a step of forming a first silicon carbide semiconductor layer on the silicon carbide substrate using a first source material gas (S12), and a step of forming a second silicon carbide semiconductor layer on the first silicon carbide semiconductor layer using a second source material gas (S13) are provided. In the step of forming a first silicon carbide semiconductor layer (S12) and the step of forming a second silicon carbide semiconductor layer (S13), ammonia gas is used as a dopant gas, and the first source material gas has a C/Si ratio of not less than 1.6 and not more than 2.2, the C/Si ratio being the number of carbon atoms to the number of silicon atoms.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 25, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Jun Genba
  • Patent number: 9627264
    Abstract: A semiconductor device and method of formation are provided herein. A semiconductor device includes a fin having a doped region, in some embodiments. The semiconductor device includes a gate over a channel portion of the fin. The gate including a gate electrode over a gate dielectric between a first sidewall spacer and a second sidewall spacer. The first sidewall spacer includes an initial first sidewall spacer over a first portion of a dielectric material. The second sidewall spacer includes an initial second sidewall spacer over a second portion of the dielectric material.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen
  • Patent number: 9627476
    Abstract: A semiconductor device and method of formation are provided herein. A semiconductor device includes a fin having a first wall extending along a first plane, the fin including a doped region defining a first furrow on a first side of the first plane. A dielectric is disposed within the first furrow, such that the dielectric is in contact with the first furrow between a first end of the dielectric and a second end of the dielectric. The first end is separated a first distance from the first plane. The dielectric disposed within the furrow increases the isolation of a channel portion of adjacent fins, and thus decreases current leakage of a FinFET, as compared to a FinFET including fins that do not include a dielectric disposed within a furrow.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Carlos H. Diaz, Chih-Hao Wang, Kuo-Cheng Ching, Zhiqiang Wu